scholarly journals Genetic diversity in three invasive clonal aquatic species in New Zealand

BMC Genetics ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 52 ◽  
Author(s):  
Carla Lambertini ◽  
Tenna Riis ◽  
Birgit Olesen ◽  
John S Clayton ◽  
Brian K Sorrell ◽  
...  
2005 ◽  
Vol 134 (2) ◽  
pp. 377-383 ◽  
Author(s):  
K. H. DYET ◽  
D. R. MARTIN

An epidemic of meningococcal disease caused by serogroup B meningococci expressing the P1.7-2,4 PorA protein began in New Zealand in 1991. The PorA type has remained stable. Different porB have been found in association with the P1.7-2,4 PorA, although type 4 has been most common. The clonal origins of B:P1.7-2,4 meningococci isolated from cases during 1990 to the end of 2003 were analysed. In 1990, the year immediately preceding the recognized increase in disease rates, all three subclones (ST-41, ST-42, and ST-154) of the ST-41/44 clonal complex occurred among the five isolates of B:P1.7-2,4. The two sequence types, ST-42 and ST-154, continued to cause most disease throughout New Zealand. Isolates belonging to subclone ST-41 were mostly identified early in the epidemic and in the South Island. 16S rRNA typing indicated that isolates belonging to the subclones ST-41 and ST-154 share a common ancestor, with those typing as ST-42 more distantly related with some genetically ambiguous. It is possible that ST-41 and ST-154 may have evolved one from the other but evolution to ST-42 is more difficult to explain. It is possible that one or more of the ST types could have been introduced into New Zealand prior to the first detection of clinical cases in 1990. Genetic diversity may have occurred during carriage in the community.


2021 ◽  
Author(s):  
◽  
Sebastián Ignacio Hernández Muñoz

<p>The school shark (Galeorhinus galeus) is a coastal bentho-pelagic species that is highly migratory and has a widespread distribution in temperate waters. This species matures late, has a relatively low fecundity and is slow growing, which makes it vulnerable to overfishing. They are commercially fished throughout their distribution, and some global stocks have been under pressure because of poor management. In Australia, longline and gillnet fisheries targeted pregnant females and juveniles around Victorian and Tasmanian nursery grounds, resulting in loss of historical inshore nursery habitat. School shark tagging programmes have reported migration between Australian and New Zealand stocks, but preliminary genetic studies have suggested that there are slight genetic differences between the stocks. Currently, the Australian and New Zealand school shark fisheries are assessed and managed as separate stocks. However, the question of whether this species is comprised of a single population or multiple sub-populations in the South Pacific remains unresolved. Given the commercial importance of the school shark fisheries and the concern about stock levels on the regional and trans-Tasman scales, knowledge of stock structure is essential for effective management. The aim of this thesis research was to determine the levels of genetic diversity and population structure of G. galeus in New Zealand and Australia, and compare these to a population in Chile, using mitochondrial DNA (mtDNA) sequencing and microsatellite DNA markers.  The DNA sequence of an 893 base pair region of the mtDNA control region (CR) was determined using 475 school shark samples and nine microsatellite DNA loci were genotyped in 239 individuals. Analyses of the data revealed strong evidence of genetic differentiation between G. galeus populations in Australasia and Chile, suggesting restricted gene flow among populations in the western and eastern areas of the Pacific Ocean. The FST values ranged from 0.188 to 0.300 for CR mtDNA, and 0.195 to 0.247 for microsatellite DNA in G. galeus. However, there was no evidence of stock differentiation among New Zealand/Australian sample sites for either mtDNA or microsatellite DNA data. These results support the model of a single panmictic stock across the Tasman Sea. The similarity of the results obtained from the maternally inherited mtDNA and biparental inherited microsatellite loci did not support the suggestion of sex-biased dispersal of G. galeus in the New Zealand/Australia region and it was concluded that females and males had similar patterns of dispersal.  Sharks can be either monogamous or polygamous, which is important when considering stock assessments and harvesting models. Multiple paternity has been reported in several shark species, however, the number of sires per litter varies considerably among species. An investigation of multiple paternity (MP) was conducted in G. galeus by assessing the levels of relatedness within progeny arrays using six polymorphic microsatellite DNA markers. Five “families” (mother and litters) were sampled from the North Island of New Zealand and a parentage analysis was conducted. The minimum number of males contributing to each progeny array was estimated by identifying the putative paternal alleles by allele counting and reconstructing multilocus genotypes method. The analysis showed the occurrence of genetic polyandry in G. galeus; two of five litters showing multiple sires involved in the progeny arrays (40%). The minimum number of sires per litter ranged from one to four. Although MP was only detected in two litters, this finding is consistent with the known reproductive characteristics of G. galeus. It can potentially store sperm for long periods of time and has a specific mating season when males and females typically mix on the edge of the continental shelf. Detecting MP within a litter has highlighted the importance of the post-copulatory selective processes in the G. galeus mating system, and this has implications for the management and conservation of genetic diversity.</p>


Author(s):  
Lucia Rivas ◽  
Shevaun Paine ◽  
Pierre-Yves Dupont ◽  
Audrey Tiong ◽  
Beverley Horn ◽  
...  

This study describes the epidemiology of listeriosis in New Zealand (NZ) between 1999 and 2018, as well as the retrospective whole genome sequencing (WGS) of 453 Listeria monocytogenes isolates corresponding to 95% of the human cases within this period. The average notified rate of listeriosis was 0.5 cases per 100,000 population and non-pregnancy associated cases were more prevalent than pregnancy-associated cases (average 19 and 5 cases per annum, respectively). Analysis of WGS data was assessed using multi-locus sequencing typing (MLST), including core-genome and whole-genome MLST (cgMLST and wgMLST) and single-nucleotide polymorphism (SNP) analysis. Thirty-nine sequence types (STs) were identified, with the most common being, ST1 (21.9%), ST4 (13.2%), ST2 (11.3%), ST120 (6.1%) and ST155 (6.4%). A total of 291 different cgMLST types were identified, with the majority (n = 243) of types observed as a single isolate, consistent with the observation that listeriosis is predominately sporadic. Amongst the 49 cgMLST types containing two or more isolates, 18 cgMLST types contained 2-4 isolates (50 isolates in total, including three outbreak-associated isolates) that shared low genetic diversity (0-2 whole-genome alleles), some of which were dispersed in time or geographical regions. SNP-analysis also produced comparable results to wgMLST. The low genetic diversity within these clusters suggests a potential common source but incomplete epidemiological data impaired retrospective epidemiological investigations. Prospective use of WGS analysis, together with thorough exposure information from cases will potentially identify future outbreaks more rapidly and possibly those that have been undetected for some time over different geographically regions.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1258
Author(s):  
Jiali Li ◽  
Bin Zhao ◽  
Yang Chen ◽  
Bohao Zhao ◽  
Naisu Yang ◽  
...  

At present, there is an abundance of quality domestic rabbit breeds in China. However, due to the lack of technical standards for the genetic evaluation of rabbit germplasm resources, there have been a number of problems, such as poor breed conservation. By studying the genetic diversity of 130 New Zealand white rabbits (regardless of generation), we obtained the best simple sequence repeat (SSR) marker combination. We found that, when using microsatellite markers for the effective genetic evaluation of domestic rabbits, the number of records should be greater than 60 and the marker number more than 22. Through the comparative analysis of 30 combinations of 22 markers, the optimal combination of 22 markers was determined, and the 22 SSR polymorphic loci were distributed on different chromosomes. We performed a genetic analysis of 200 New Zealand white rabbits corresponding to two generations, using the best SSR polymorphic loci combination. There were no significant differences in the genetic diversity parameters between the two generations of rabbits (p > 0.05), indicating that the characteristics of this excellent rabbit germplasm have been effectively preserved. At the same time, we verified that the established method can be used to evaluate the breed conservation of rabbit germplasm resources.


2010 ◽  
Vol 42 (1) ◽  
pp. 43 ◽  
Author(s):  
Grant W McKenzie ◽  
Johanna Abbott ◽  
Huitong Zhou ◽  
Qian Fang ◽  
Norma Merrick ◽  
...  

1992 ◽  
Vol 43 (6) ◽  
pp. 1561 ◽  
Author(s):  
NG Elliott ◽  
RD Ward

Orange roughy from six localities around the southern coasts of Australia showed no evidence of genetic subdivision when the products of 11 polymorphic enzyme loci were analysed electrophoretically. Samples ranged in size from 84 to 171 per locality. Gene frequencies were very similar in samples taken from New Zealand. The amount of total genetic diversity attributable to subdivision among samples is estimated at 0.55 to 0.22%, but bootstrapping procedures showed that much of this diversity could arise from sampling error. A minimum of around 200 migrants per locality per generation would be sufficient to maintain the observed genetic homogeneity, although actual numbers migrating are likely to be greater than this.


2019 ◽  
Vol 191 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Matt H Buys ◽  
Richard C Winkworth ◽  
Peter J de Lange ◽  
Peter G Wilson ◽  
Nora Mitchell ◽  
...  

Abstract Leptospermum scoparium (Myrtaceae) is a morphologically highly variable species found in mainland Australia, Tasmania and New Zealand. For example, in New Zealand up to six morphologically distinct varieties of this species have been described, although only two (var. scoparium and var. incanum) are now formally recognized. In the present study we provide a first examination of genetic diversity in this culturally and commercially important species with the aim of gaining insights into its origins and evolution. We used anchored hybrid enrichment to acquire sequence data from 485 orthologous low-copy nuclear loci for 27 New Zealand and three Australian accessions of L. scoparium and representatives of several other Leptospermum spp. The final concatenated data matrix contained 421 687 nucleotide positions of which 55 102 were potentially informative. Despite the relative large data set, our analyses suggest that a combination of low and incompatible data signal limits the resolution of relationships among New Zealand populations of L. scoparium. Nevertheless, our analyses are consistent with genetic diversity being geographically structured, with three groups of L. scoparium recovered. We discuss the evolutionary and taxonomic implications of our findings.


2012 ◽  
Vol 63 (6) ◽  
pp. 505 ◽  
Author(s):  
A. Veríssimo ◽  
J. R. McDowell ◽  
J. E. Graves

The leafscale gulper (Centrophorus squamosus) is a wide-ranging deepwater benthopelagic shark threatened by commercial fisheries in parts of its range. Despite concerns about resource sustainability, little is known about the population structure and connectivity between critical habitats of the leafscale gulper. This study investigates the genetic population structure and the migration patterns of C. squamosus using nuclear microsatellites and mitochondrial NADH dehydrogenase subunit 2 (ND2) gene sequences. Genetic diversity was estimated and compared among sample collections from off Ireland, Portugal, the Azores, South Africa and New Zealand. The null hypothesis of genetic homogeneity among all collections was not rejected by the nuclear loci (FST (the overall genetic differentiation among sample collections) = –0.002, P = 0.88), but we found long-term genetic divergence between New Zealand and the remaining collections at the mtDNA ND2 (FCT (genetic differentation among groups of sample collections) = 0.366, P = 0.000). Migration rate estimates indicated limited female dispersal across the Indian Ocean whereas males showed less restricted dispersal. Our results are consistent with a single genetic stock of C. squamosus and the existence of sex-biased dispersal across the Indian Ocean. Widespread genetic homogeneity at nuclear loci minimizes the loss of unique adaptive genetic diversity in the event of localised depletion. However, high local fishing mortality may have far reaching impacts given the marked sex- and maturity-stage-based habitat partitioning previously reported for C. squamosus.


Sign in / Sign up

Export Citation Format

Share Document