scholarly journals Winter wheat grain yield and its components in the North China Plain: Irrigation management, cultivation, and climate

2013 ◽  
Vol 73 (3) ◽  
pp. 233-242 ◽  
Author(s):  
Lihua Lv ◽  
Yanrong Yao ◽  
Lihua Zhang ◽  
Zhiqiang Dong ◽  
Xiuling Jia ◽  
...  
Author(s):  
Huifang Han ◽  
Yujie Ren Zhenxing Yan

Water resources in the North China Plain (NCP) are limited, so it’s in urgent need to optimize deficit by irrigation for sustainable winter wheat production in this area. Winter wheat grain yield (GY), contribution of dry matter (DM) remobilization to GY (CDMRG), and water use efficiency (WUE) were investigated in NCP. Compared with non-irrigation treatment, irrigated with 60 mm each at the winter wheat jointing stage (JS) and heading stage (HS) achieved reasonable winter wheat GY and WUE. Compared with irrigation with 120 mm only at JS and irrigation with 40 mm each at JS, HS, and milking stage (MS) of winter wheat, irrigation with 60 mm each at JS and HS provided the highest CDMRG, which resulted to the highest GY and WUE; this result was mainly due to a significant increase of the spike numbers (SN) per m2. The results suggest that in the NCP, in order to achieve reasonable GY and WUE, winter wheat should be irrigated with 60 mm each at JS and HS.


2017 ◽  
Vol 54 (4) ◽  
pp. 520-530 ◽  
Author(s):  
YUJIE REN ◽  
CHAO GAO ◽  
ZHENXING YAN ◽  
RUI ZONG ◽  
YUZHAO MA ◽  
...  

SUMMARYTo explore effective ways to decrease soil CO2 emission and increase winter wheat grain yield in the North China Plain, a field experiment was conducted using two planting systems (wide-precision planting and conventional-cultivation planting) and two straw mulching rates (0 and 0.6 kg m−2) to study carbon emission, carbon cumulative emission flux, grain yield and yield carbon utilization efficiency. In the 2013–2014 and 2014–2015 winter wheat growing seasons, CO2 emission rate and cumulative CO2-C fluxes following straw mulching treatment were significantly lower than those following non-mulching treatments, whereas the yield carbon utilization efficiency was significant higher following straw mulching treatment. Straw mulching significantly reduced winter wheat grain yield, which was mainly due to the significant decrease in spike numbers and 1000-kernel weight. However, wide-precision planting system significantly increased winter wheat grain yields by increasing spike numbers under straw mulching conditions. Therefore, wide-precision planting system could compensate for the reduction in winter wheat grain yield under carbon sequestration conditions in the North China Plain.


2018 ◽  
Vol 221 ◽  
pp. 219-227 ◽  
Author(s):  
Xuexin Xu ◽  
Meng Zhang ◽  
Jinpeng Li ◽  
Zuqiang Liu ◽  
Zhigan Zhao ◽  
...  

2019 ◽  
Vol 70 (9) ◽  
pp. 772 ◽  
Author(s):  
Su-Wei Feng ◽  
Zhen-Gang Ru ◽  
Wei-Hua Ding ◽  
Tie-Zhu Hu ◽  
Gan Li

Winter wheat (Triticum aestivum L.) production in the North China Plain (NCP) is threatened by wheat lodging. Therefore, enhancing plant lodging resistance by improving stem quality traits is crucial to maintaining high stable yields of winter wheat. A consecutive 7-year field experiment was conducted to study the effects of stem traits on lodging resistance and the yield of four winter wheat cultivars (Bainong 418, Aikang 58, Wenmai 6 and Zhoumai 18). The results indicated that rainfall is often accompanied by strong winds that can cause lodging in the field. Stalk bending strength and wall thickness of the second internode showed significant negative correlations with lodging index, and a higher lodging index indicated increased lodging risk, which, in turn, could seriously affect the grain yield of wheat. Significant regression relationships were observed between lodging index and population lodging resistance strength, as measured using a crop lodging resistance electronic measuring device. Statistical analysis revealed that yield components and the grain yield of Bainong 418 were higher than those of the other cultivars; there was no significant difference between Bainong 418 and Aikang 58 in lodging index, stalk bending strength or single-stalk and population lodging resistance strengths at anthesis and the middle filling stages, but the mean plant height of Bainong 418 was significantly higher than that of Aikang 58. These results provide a new and reliable method for assessing lodging resistance capacity and indicate that greater lodging resistance, as determined by simultaneously considering plant height and basal stem strength, is an important way to achieve high, stable yield in winter wheat.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e86938 ◽  
Author(s):  
Xiu-liang Jin ◽  
Hai-kuan Feng ◽  
Xin-kai Zhu ◽  
Zhen-hai Li ◽  
Sen-nan Song ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 696 ◽  
Author(s):  
Shah Jahan Leghari ◽  
Kelin Hu ◽  
Hao Liang ◽  
Yichang Wei

The North China Plain (NCP) is experiencing serious groundwater level decline and groundwater nitrate contamination due to excessive water pumping and application of nitrogen (N) fertilizer. In this study, grain yield, water and N use efficiencies under different cropping systems including two harvests in 1 year (winter wheat–summer maize) based on farmer (2H1Y)FP and optimized practices (2H1Y)OPT, three harvests in 2 years (winter wheat–summer maize–spring maize, 3H2Y), and one harvest in 1 year (spring maize, 1H1Y) were evaluated using the water-heat-carbon-nitrogen simulator (WHCNS) model. The 2H1YFP system was maintained with 100% irrigation and fertilizer, while crop water requirement and N demand for other cropping systems were optimized and managed by soil testing. In addition, a scenario analysis was also performed under the interaction of linearly increasing and decreasing N rates, and irrigation levels. Results showed that the model performed well with simulated soil water content, soil N concentration, leaf area index, dry matter, and grain yield. Statistically acceptable ranges of root mean square error, Nash–Sutcliffe model efficiency, index of agreement values close to 1, and strong correlation coefficients existed between simulated and observed values. We concluded that replacing the prevalent 2H1YFP with 1H1Y would be ecofriendly at the cost of some grain yield decline. This cropping system had the highest average water use (2.1 kg m−3) and N use efficiencies (4.8 kg kg–1) on reduced water (56.64%) and N (81.36%) inputs than 2H1YFP. Whereas 3H2Y showed insignificant results in terms of grain yield, and 2H1YFP was unsustainable. The 2H1YFP system consumed a total of 745 mm irrigation and 1100 kg N ha–1 in two years. When farming practices were optimized for two harvests in 1 year system (2H1Y)OPT, then grain yield improved and water (18.12%) plus N (61.82%) consumptions were minimized. There was an ample amount of N saved, but water conservation was still unsatisfactory. However, considering the results of scenario analyses, it is recommended that winter wheat would be cultivated at <200 mm irrigation by reducing one irrigation event.


Sign in / Sign up

Export Citation Format

Share Document