scholarly journals Establishment of empirical relations between fuel moisture content and the normalised difference vegetation index

Author(s):  
M Castro ◽  
J.C Parra ◽  
L. J Morales ◽  
C Salas
2020 ◽  
Vol 12 (11) ◽  
pp. 1714
Author(s):  
Mariano García ◽  
David Riaño ◽  
Marta Yebra ◽  
Javier Salas ◽  
Adrián Cardil ◽  
...  

Live Fuel Moisture Content (LFMC) contributes to fire danger and behavior, as it affects fire ignition and propagation. This paper presents a two layered Landsat LFMC product based on topographically corrected relative Spectral Indices (SI) over a 2000–2011 time series, which can be integrated into fire behavior simulation models. Nine chaparral sampling sites across three Landsat-5 Thematic Mapper (TM) scenes were used to validate the product over the Western USA. The relations between field-measured LFMC and Landsat-derived SIs were strong for each individual site but worsened when pooled together. The Enhanced Vegetation Index (EVI) presented the strongest correlations (r) and the least Root Mean Square Error (RMSE), followed by the Normalized Difference Infrared Index (NDII), Normalized Difference Vegetation Index (NDVI) and Visible Atmospherically Resistant Index (VARI). The relations between LFMC and the SIs for all sites improved after using their relative values and relative LFMC, increasing r from 0.44 up to 0.69 for relative EVI (relEVI), the best predictive variable. This relEVI served to estimate the herbaceous and woody LFMC based on minimum and maximum seasonal LFMC values. The understory herbaceous LFMC on the woody pixels was extrapolated from the surrounding pixels where the herbaceous vegetation is the top layer. Running simulations on the Wildfire Analyst (WFA) fire behavior model demonstrated that this LFMC product alone impacts significantly the fire spatial distribution in terms of burned probability, with average burned area differences over 21% after 8 h burning since ignition, compared to commonly carried out simulations based on constant values for each fuel model. The method could be applied to Landsat-7 and -8 and Sentinel-2A and -2B after proper sensor inter-calibration and topographic correction.


Author(s):  
Chunquan Fan ◽  
Binbin He ◽  
Peng Kong ◽  
Hao Xu ◽  
Qiang Zhang ◽  
...  

Author(s):  
Kellen Nelson ◽  
Daniel Tinker

Understanding how live and dead forest fuel moisture content (FMC) varies with seasonal weather and stand structure will improve researchers’ and forest managers’ ability to predict the cumulative effects of weather on fuel drying during the fire season and help identify acute conditions that foster wildfire ignition and high rates of fire spread. No studies have investigated the efficacy of predicting FMC using mechanistic water budget models at daily time scales through the fire season nor have they investigated how FMC may vary across space. This study addresses these gaps by (1) validating a novel mechanistic live FMC model and (2) applying this model with an existing dead FMC model at three forest sites using five climate change scenarios to characterize how FMC changes through time and across space. Sites include post-fire 24-year old forest, mature forest with high canopy cover, and mature forest affected by the mountain pine beetle with moderate canopy cover. Climate scenarios include central tendency, warm/dry, warm/wet, hot/dry, and hot/wet.


2013 ◽  
Vol 22 (5) ◽  
pp. 625 ◽  
Author(s):  
Ambarish Dahale ◽  
Selina Ferguson ◽  
Babak Shotorban ◽  
Shankar Mahalingam

Formulation of a physics-based model, capable of predicting fire spread through a single elevated crown-like shrub, is described in detail. Predictions from the model, obtained by numerical solutions to governing equations of fluid dynamics, combustion, heat transfer and thermal degradation of solid fuel, are found to be in fairly good agreement with experimental results. In this study we utilise the physics-based model to explore the importance of two parameters – the spatial variation of solid fuel bulk density and the solid fuel moisture content – on the burning of an isolated shrub in quiescent atmosphere. The results suggest that vertical fire spread rate within an isolated shrub and the time to initiate ignition within the crown are two global parameters significantly affected when the spatial variation of the bulk density or the variation of fuel moisture content is taken into account. The amount of fuel burnt is another parameter affected by varying fuel moisture content, especially in the cases of fire propagating through solid fuel with moisture content exceeding 40%. The specific mechanisms responsible for the reduction in propagation speed in the presence of higher bulk densities and moisture content are identified.


2014 ◽  
pp. 353-359
Author(s):  
Anita Pinto ◽  
Juncal Espinosa-Prieto ◽  
Carlos Rossa ◽  
Stuart Matthews ◽  
Carlos Loureiro ◽  
...  

2020 ◽  
Vol 245 ◽  
pp. 111797 ◽  
Author(s):  
Krishna Rao ◽  
A. Park Williams ◽  
Jacqueline Fortin Flefil ◽  
Alexandra G. Konings

Sign in / Sign up

Export Citation Format

Share Document