A comparative study on four different transmission lines in LTCC for 60 GHz applications

2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000191-000198 ◽  
Author(s):  
A. Isapour ◽  
D. Bahloul ◽  
A. B. Kouki

Abstract The wireless telecommunication systems have an undeniable role in today's society. The rapid progress of wireless services and applications accelerates demands for high data-rate reliable systems. The 60 GHz band with its 5 GHz globally unlicensed available spectrum, provides a great opportunity for the next generation of high data-rate wireless communication. Despite this attractive bandwidth surrounding 60 GHz, there are still many challenges to be addressed such as the loss performance and the integration with other systems. Low Temperature Cofired Ceramic (LTCC) technology, with its unique and mature multilayer fabrication process, has excellent capability of realizing miniaturized 3D low loss structures to overcome these challenges. Since, one of the key components in any communication system for both interconnecting and designing components is Low loss transmission lines, in this article we overview the performances and challenges for four different most practical transmission lines at 60 GHz in LTCC: Microstrip, Stripline, Coplanar Waveguide (CPW), and LTCC Integrated Waveguide (LIW).

2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000050-000053
Author(s):  
Alexander Schulz ◽  
Sven Rentsch ◽  
Lei Xia ◽  
Robert Mueller ◽  
Jens Mueller

This paper presents a low loss fully embedded bandpass filter (BPF) using low temperature co-fired ceramic (LTCC) for multilayer System-in-Package (SiP) and Multi-Chip-Module (MCM) applications, e.g. wireless applications for the unlicensed 60 GHz band. The measured insertion loss was 1.5 dB at the center frequency 58 GHz, and a return loss of less than −10 dB was achieved, including two grounded coplanar waveguide transmission line (CPWg) to stripline transitions. The four layers BPF has a 3 dB bandwidth of about 11 GHz which supplies e.g. broadband and high data rate applications. The whole BPF requires a substrate area of 5.6 × 2.1 × 0.42 mm3 with transitions and a shielding via fence. This BPF suits well for V-band applications in a LTCC package because of the compact dimensions and the good performance.


2001 ◽  
Vol 37 (10) ◽  
pp. 654 ◽  
Author(s):  
C. Loyez ◽  
N. Rolland ◽  
P.A. Rolland ◽  
O. Lafond

2005 ◽  
Vol 15 (10) ◽  
pp. 609-611 ◽  
Author(s):  
N. Deparis ◽  
A. Bendjabballah ◽  
A. Boe ◽  
M. Fryziel ◽  
C. Loyez ◽  
...  
Keyword(s):  
60 Ghz ◽  

2010 ◽  
Vol 52 (3) ◽  
pp. 667-673 ◽  
Author(s):  
K. C. Eun ◽  
J.J. Lee ◽  
D. Y. Jung ◽  
S. J. Cho ◽  
H. Y. Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document