Transient Liquid Phase Sintering Pastes in Heterogeneous Integration

Author(s):  
Catherine Shearer

Integrated package technologies continue to be the dominant trend in the electronics packaging industry. In particular, heterogeneous integration of logic and memory or sensing is an enormous growth segment for both mobile electronics and IoT applications. In the mobile microprocessor segment of the field, the most advanced technologies will be implemented in the early adopter class. New package architectures and interconnect schemes will be vetted and implemented without significant cost pressure, performance is the driver. In the IoT segment and downstream mobile, however; lower cost alternatives to cutting edge packaging architectures are needed to drive market growth. Sintering pastes offer an opportunity to cost-effectively enable cutting edge 3D package capability for a wider variety of applications. In this paper we will explore the use of transient liquid phase sintering (TLPS) pastes in package-on-package (POP) schemes for integrated logic with memory or sensing functions in through mold via architectures. Through mold via technology has been well established in the industry and has significantly contributed to the adoption of three dimensional packaging architectures. The advantages of using TLPS pastes in similar structures will be detailed.

2016 ◽  
Vol 55 (4S) ◽  
pp. 04EC14 ◽  
Author(s):  
Masahisa Fujino ◽  
Hirozumi Narusawa ◽  
Yuzuru Kuramochi ◽  
Eiji Higurashi ◽  
Tadatomo Suga ◽  
...  

2015 ◽  
Vol 2015 (1) ◽  
pp. 000449-000452 ◽  
Author(s):  
Xiangdong Liu ◽  
Hiroshi Nishikawa

We develop a transient liquid phase sinter (TLPS) bonding using Sn-coated Cu micro-sized particles. With this bonding process, a thermally stable joint comprising Cu3Sn phase and a dispersion of ductile Cu particles can be obtained. The particle paste, which contained Cu particles with a thin Sn coating and terpineol, was used to join Cu substrates. The setup was bonded at 300 °C for 30s under an applied pressure of 10 MPa using a thermo-compression bonding system under a formic acid gas atmosphere for reducing the oxide layer on the Sn coating and the Cu substrate. After bonding, the TLPS joint showed a thermally stable microstructure with a good shear strength, which was fully consisted of Cu3Sn intermetallic compounds matrix and embedded ductile Cu particles. The kinetics of the microstructure transformation and high temperature reliability of the TLPS joint were investigated. After 300 °C isothermal aging for 200h, the shear strength and microstructure of the TLPS joints showed almost unchanged. The results demonstrate that joint with high-melting-point obtained by the TLPS bonding using Sn-coated Cu particle paste has the potential to fulfill the requirement of high temperature electronic packaging.


2020 ◽  
Vol 40 (15) ◽  
pp. 5286-5292 ◽  
Author(s):  
Cristina Ojalvo ◽  
Estíbaliz Sánchez-González ◽  
Fernando Guiberteau ◽  
Oscar Borrero-López ◽  
Angel L. Ortiz

1998 ◽  
Vol 161-163 ◽  
pp. 59-62
Author(s):  
Katsutoshi Komeya ◽  
Takeshi Meguro ◽  
Y. Chiba ◽  
Hua Long Li ◽  
Toshihiro Kameda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document