scholarly journals Fabrication of Highly Reliable Joint Based on Cu/Ni/Sn Double-Layer Powder for High Temperature Application

2019 ◽  
Vol 16 (4) ◽  
pp. 188-195 ◽  
Author(s):  
Hongyan Xu ◽  
Yaochun Shen ◽  
Yihua Hu ◽  
Jianqiang Li ◽  
Ju Xu

Abstract A highly reliable three-dimensional network structure joint was fabricated based on Cu/Ni/Sn powder with double-layer coatings and transient liquid phase bonding (TLPB) technology for high temperature application. The Cu/Ni/Sn joint is characterized by Cu metal particles embedded in the matrix of (Cu,Ni)6Sn5/Ni3Sn4 intermetallic compounds (IMCs), with a low void ratio, and can be reflowed at low temperatures (<260°C), but it can reliably work at a high temperature up to 415°C. Cu/Ni/Sn double-layer powders with different Sn layer and Ni layer thickness were was fabricated and compressed as preform used for TLPB joint bonding. The microstructure and phase composition evolution for Cu/Sn and Cu/Ni/Sn systems during reflow and aging were comparatively studied. Two kinds of interfacial structure designs were made, and corresponding interfacial microscopic morphology was analyzed and compared under once and twice reflow soldering processes. The results indicated that the Sn-coating layer was completely consumed to form (Cu,Ni)6Sn5/Ni3Sn4 IMCs, and the Cu/Ni/Sn joint had a lower void ratio and a higher shear strength than those of Cu/Sn. The mechanism of the Ni-coating layer inhibiting phase transformation was studied. The high reliable three-dimensional network structure joint based on Cu/Ni/Sn double-layer powder was fabricated for high temperature application.

2019 ◽  
Vol 2019 (HiTen) ◽  
pp. 000075-000084
Author(s):  
Hongyan Xu ◽  
Yaochun Shen ◽  
Yihua Hu ◽  
Jianqiang Li ◽  
Ju Xu

Abstract A highly reliable three-dimensional network structure joint was fabricated based on Cu@Ni@Sn core-shell powder and transient liquid phase bonding (TLPB) technology for high temperature application. Cu@Ni@Sn joint is characterized by Cu metal particles embedded in the matrix of (Cu,Ni)6Sn5/Ni3Sn4 intermetallics (IMCs), low level of voiding is achieved, they can be reflowed at a low temperatures (<260°C), but reliably working at high temperature up to 415°C. Cu@Ni@Sn double-layer microparticles with different Sn layer and Ni layer thickness were fabricated and compressed as preform used for TLPB joint bonding, the microstructure and phase composition evolution for Cu@Sn and Cu@Ni@Sn system were comparatively studied during reflowing and aging process. Different kinds of interfacial structure designs were made, interfacial microscopic morphology was analyzed and compared under once and twice reflowing soldering process. Results indicated that Sn coating layer was completely consumed to form (Cu,Ni)6Sn5/Ni3Sn4 IMCs, Cu@Ni@Sn bondline have lower void rate and higher shear strength than that of Cu@Sn. The mechanism of Ni coating layer inhibit Cu atom diffusing towards Cu6Sn5 to form Cu3Sn was studied. The high reliable three-dimensional network structure joint based on Cu@Ni@Sn double-layer powder was fabricated for high temperature application.


Soft Matter ◽  
2018 ◽  
Vol 14 (20) ◽  
pp. 4204-4212 ◽  
Author(s):  
Deul Kim ◽  
Artavazd Kirakosyan ◽  
Jae Woong Lee ◽  
Jong-Ryul Jeong ◽  
Jihoon Choi

Flexible and robust h-BN foam sheets with a three-dimensional network structure exhibit a much enhanced thermal conductivity as well as thermo-stability at high temperature.


1997 ◽  
Author(s):  
R. Spivey ◽  
S. Breeding ◽  
J. Andrews ◽  
D. Stefanescu ◽  
S. Sen ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20446-20456
Author(s):  
Xi Ma ◽  
Ziwei Wang ◽  
Haoguo Yang ◽  
Yiqiu Zhang ◽  
Zizhong Zhang ◽  
...  

Compared with traditional layered graphene, graphene hydrogels have been used to construct highly efficient visible light-excited photocatalysts due to their particular three-dimensional network structure and efficient electron transport capacity.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4752
Author(s):  
Xiaoqing Qu ◽  
Yuliya Nazarenko ◽  
Wei Yang ◽  
Yuanyang Nie ◽  
Yongsheng Zhang ◽  
...  

The oat β-glucan (OG) was added into set-type yogurt as a functional ingredient, in order to evaluate effects on the rheological characteristics and microstructure of set-type yogurt. When the OG concentration increased from 0 to 0.3%, the WHC gradually increased. At 0.3% OG, the set-type yogurt had the highest WHC of 94.67%. Additionally, the WHC continuously decreased, reaching the lowest WHC (about 80%) at 0.5% OG. When 0.3% OG was added, the highest score of sensory evaluation was about 85. The rheological result showed that the fermentation process went through the changes as follows: solid → liquid → solid → liquid. The addition of 0.3% OG decreased the fermentation time of set-type yogurt by about 16 min, making yogurt more inclined to be liquid. The acidity of set-type yogurt with OG was slightly higher. The result of microstructure showed that the addition of OG destroyed the three-dimensional network structure of yogurt, and some spherical aggregate particles could be clearly observed at 0.3% OG. Overall, this study provided a theoretical basis for the application of OG in set-type yogurt.


2012 ◽  
Vol 586 ◽  
pp. 69-73
Author(s):  
Chia Chen Lin ◽  
Cheng Han Lee ◽  
Ren Kae Shiue ◽  
Hsiou Jeng Shy

High-temperature brazing molybdenum using palladium and titanium foils have been investigated in the experiment. Successful brazed joints are achieved from using the palladium filler foil. Brazed joints are fully dense and free of any intermetallic phase. Three point bending strengths of 246 and 233 MPa are obtained from joints using 100 m thick palladium filler foil brazed at 1580 and 1610 oC for 600 s, respectively. The application of palladium filler foil shows potential in brazing molybdenum for high-temperature application.


Sign in / Sign up

Export Citation Format

Share Document