scholarly journals 3D in vitro model of the pancreatic acino-ductal unit through additive manufacturing technology

2021 ◽  
Vol 4 (s1) ◽  
Author(s):  
Viola Sgarminato ◽  
Chiara Tonda-Turo ◽  
Gianluca Ciardelli

This project aims at reproducing the morphology and the composition of the pancreatic acino-ductal unit. More specifically, this work involves the use of additive manufacturing technologies to fabricate a 3D exocrine glandular tissue model that mimics in vitro the physiological structure experienced by cells in vivo.

2020 ◽  
Vol 990 ◽  
pp. 61-66
Author(s):  
Jia Yi Lin ◽  
Wei Hua Cui ◽  
Bin Han ◽  
Hui Wang ◽  
Xi Hao Liu

With the rapid development of modern industry, mold as a basic hardware facility has become one of the important factors affecting the development of modern industry. The surface quality and working reliability of the mold have a direct impact on the quality of the part. Faced with a large number of failed molds in industrial production, fast and reliable mold repair technology can realize mold reuse under the premise of ensuring mold performance. It effectively shortens the construction period, saves costs and reduces mold waste. The article outlines the characteristics of wire and arc additive manufacturing technology, selective electron beam melting technology and laser cladding technology in additive manufacturing technology. The application characteristics of three additive manufacturing technologies in mold repair are analyzed. The application prospect of laser cladding technology in mold repair is pointed out. In view of the improved work reliability, the direction of laser cladding technology in the field of mold repair can be prospected.


2019 ◽  
Vol 34 (6) ◽  
pp. 415-435 ◽  
Author(s):  
Tang Mei Shick ◽  
Aini Zuhra Abdul Kadir ◽  
Nor Hasrul Akhmal Ngadiman ◽  
Azanizawati Ma’aram

The current developments in three-dimensional printing also referred as “additive manufacturing” have transformed the scenarios for modern manufacturing and engineering design processes which show greatest advantages for the fabrication of complex structures such as scaffold for tissue engineering. This review aims to introduce additive manufacturing techniques in tissue engineering, types of biomaterials used in scaffold fabrication, as well as in vitro and in vivo evaluations. Biomaterials and fabrication methods could critically affect the outcomes of scaffold mechanical properties, design architectures, and cell proliferations. In addition, an ideal scaffold aids the efficiency of cell proliferation and allows the movements of cell nutrient inside the human body with their specific material properties. This article provides comprehensive review that covers broad range of all the biomaterial types using various additive manufacturing technologies. The data were extracted from 2008 to 2018 mostly from Google Scholar, ScienceDirect, and Scopus using keywords such as “Additive Manufacturing,” “3D Printing,” “Tissue Engineering,” “Biomaterial” and “Scaffold.” A 10 years research in this area was found to be mostly focused toward obtaining an ideal scaffold by investigating the fabrication strategies, biomaterials compatibility, scaffold design effectiveness through computer-aided design modeling, and optimum printing machine parameters identification. As a conclusion, this ideal scaffold fabrication can be obtained with the combination of different materials that could enhance the material properties which performed well in optimum additive manufacturing condition. Yet, there are still many challenges from the printing methods, bioprinting and cell culturing that needs to be discovered and investigated in the future.


2020 ◽  
Vol 308 ◽  
pp. 1-20
Author(s):  
Tomasz Grzegorz Gawel

The manuscript reviews the additive manufacturing technology. The principle of operation of the most popular and new AM methods was discussed. the manuscript presents the possibility of skewing different materials for individual technologies. Additive manufacturing technologies have been described that can manufacture parts from polymers, metals, ceramics and composites.


2015 ◽  
Vol 105 (11-12) ◽  
pp. 793-797
Author(s):  
J. C. Aurich ◽  
M. Burkhart

Additive Manufacturing (AM) ist der Überbegriff für unterschiedliche Fertigungsverfahren, welche durch das schichtweise Aufbringen von Werkstoff die Herstellung von Bauteilen ermöglichen. Selective Laser Melting (SLM) ist ein additives Fertigungsverfahren zur Herstellung von Produkten mit hoher Detailgenauigkeit und Designfreiheit. Der Fachbeitrag stellt ein Konzept vor, bei dem durch systematisches Vorgehen untersucht wird, ob Produktanforderungen mit SLM besser erfüllt werden können als mit konventionellen Fertigungsverfahren.   Additive Manufacturing (AM) is the term for various manufacturing technologies that enable manufacturing of components by adding layer after layer of material. Selective Laser Melting (SLM) is an additive manufacturing technology that allows to manufacture products with high accuracy and design freedom. In this article an approach is presented to systematically examine, if product requirements can be fulfilled better with SLM than with conventional manufacturing technologies.


2021 ◽  
Vol 723 (5) ◽  
pp. 052017
Author(s):  
V Monashkov ◽  
I Russkova ◽  
Y Logvinova ◽  
N Rumyantseva ◽  
A Uljanov

Sign in / Sign up

Export Citation Format

Share Document