scholarly journals A hybrid functional electrical stimulation for real-time estimation of joint torque and closed-loop control of muscle activation

Author(s):  
Zhan Li ◽  
David Guiraud ◽  
David Andreu ◽  
Charles Fattal ◽  
Anthony Gelis ◽  
...  

As a neuroprosthetic technique, functional electrical stimulation (FES) can restore lost motor performance of impaired patients. Through delivering electrical pulses to target muscles, the joint movement can be eventually elicited. This work presents a real-time FES system which is able to deal with two neuroprosthetic missions: one is estimating FES-induced joint torque with evoked electromyograph (eEMG), and the other is artificially controlling muscle activation with such eEMG feedback. The clinical experiment results on spinal cord injured (SCI) patients and healthy subjects show promising performance of the proposed FES system.

2019 ◽  
Vol 6 ◽  
pp. 205566831982580 ◽  
Author(s):  
Ruslinda Ruslee ◽  
Jennifer Miller ◽  
Henrik Gollee

Introduction: Functional electrical stimulation is a common technique used in the rehabilitation of individuals with a spinal cord injury to produce functional movement of paralysed muscles. However, it is often associated with rapid muscle fatigue which limits its applications. Methods: The objective of this study is to investigate the effects on the onset of fatigue of different multi-electrode patterns of stimulation via multiple pairs of electrodes using doublet pulses: Synchronous stimulation is compared to asynchronous stimulation patterns which are activated sequentially (AsynS) or randomly (AsynR), mimicking voluntary muscle activation by targeting different motor units. We investigated these three different approaches by applying stimulation to the gastrocnemius muscle repeatedly for 10 min (300 ms stimulation followed by 700 ms of no-stimulation) with 40 Hz effective frequency for all protocols and doublet pulses with an inter-pulse-interval of 6 ms. Eleven able-bodied volunteers (28 ± 3 years old) participated in this study. Ultrasound videos were recorded during stimulation to allow evaluation of changes in muscle morphology. The main fatigue indicators we focused on were the normalised fatigue index, fatigue time interval and pre-post twitch–tetanus ratio. Results: The results demonstrate that asynchronous stimulation with doublet pulses gives a higher normalised fatigue index (0.80 ± 0.08 and 0.87 ± 0.08) for AsynS and AsynR, respectively, than synchronous stimulation (0.62 ± 0.06). Furthermore, a longer fatigue time interval for AsynS (302.2 ± 230.9 s) and AsynR (384.4 ± 279.0 s) compared to synchronous stimulation (68.0 ± 30.5 s) indicates that fatigue occurs later during asynchronous stimulation; however, this was only found to be statistically significant for one of two methods used to calculate the group mean. Although no significant difference was found in pre-post twitch–tetanus ratio, there was a trend towards these effects. Conclusion: In this study, we proposed an asynchronous stimulation pattern for the application of functional electrical stimulation and investigated its suitability for reducing muscle fatigue compared to previous methods. The results show that asynchronous multi-electrode stimulation patterns with doublet pulses may improve fatigue resistance in functional electrical stimulation applications in some conditions.


1999 ◽  
Vol 80 (1) ◽  
pp. 40-47 ◽  
Author(s):  
Seiya Miyamoto ◽  
Yoichi Shimada ◽  
Kozo Sato ◽  
Hitoshi Kagaya ◽  
Toshiki Matsunaga ◽  
...  

2005 ◽  
Vol 17 (01) ◽  
pp. 19-26 ◽  
Author(s):  
CHENG-LIANG LIU ◽  
CHUNG-HUANG YU ◽  
SHIH-CHING CHEN ◽  
CHANG-HUNG CHEN

Functional electrical stimulation (FES) is a method for restoring the functional movements of paraplegic or patients with spinal cord injuries. However, the selection of parameters that control the restoration of standing up and sitting functions has not been extensively investigated. This work provides a method for choosing the four main items involved in evaluating the strategies for sit-stand-sit movements with the aid of a modified walker. The control method uses the arm-supported force and the angles of the legs as feedback signals to change the intensity of the electrical stimulation of the leg muscles. The control parameters, Ki and Kp, are vary for different control strategies. Four items are collected through questionnaires and used for evaluation. They are the maximum reactions of the two hands, the average reaction of the two hands, largest absolute angular velocity of the knee joints, and the sit-stand-sit duration time. The experimental data are normalized to facilitate comparison. Weighting factors are obtained and analyzed from questionnaires answered by experts and are added to evaluation process for manipulation. The results show that the best strategy is the closed-loop control with parameters Ki=0.5 and Kp=0.


Author(s):  
Yuu HASEGAWA ◽  
Tomoya KITAMURA ◽  
Hiroto MIZOGUCHI ◽  
Naoto MIZUKAMI ◽  
Sho SAKAINO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document