scholarly journals A dynamic model for solar radiation in the Tyrrhenian Basin of Central Mediterranean area

2014 ◽  
Vol 3 (1) ◽  
Author(s):  
Alessia Naccarato

Studying the level of solar radiation is important for problems related to both environmental pollution and alternative energy development. In this work a space-time model for solar radiation in the Tyrrhenian basin is presented. Three main features of the model must be stressed because of their importance in modelling space-time variability of a phenomenon. The first and most important one is that relations between solar radiation in different sites are an outcome of the model’s estimation procedure. With this approach spatial weights are not bound to be symmetrical and proportional to distance between locations or to be constant over time. The second one is the presence of a simultaneous effect among locations as the solar radiation in one of them is a function of what simultaneously happens in all the other ones. The third main feature of the model is represented by constrained estimation on the basis of <em>a priori</em> knowledge about the phenomenon that allows to cope the problem of the increased number of parameters.

2021 ◽  
Author(s):  
Pietro Paolo Pierantoni ◽  
Giulia Penza ◽  
Chiara Macchiavelli ◽  
Antonio Schettino ◽  
Eugenio Turco

&lt;p&gt;The fragmentation of the Adriatic plate and the sinking of the remnant Alpine Tethys and Ionian lithosphere give rise to passive subduction processes that, together with the collision of the African and European plates, characterize the Central Mediterranean area.&lt;br&gt;Circum - Mediterranean mountain ranges and Alboran, Balearic, Tyrrhenian and Hellenic back-arc basins are formed in this complex deformation system.&lt;br&gt;The evolution of the geodynamic processes that guided the opening of the Tyrrhenian basin and the contemporary formation of the Apennine chain are described in this work using the plate kinematics technique.&lt;br&gt;The study area has been divided into polygons (crustal blocks of microplates) after careful observation of the regional structures. The polygons are distinguished on the basis of the direction of the Tyrrhenian extension and the boundaries between them coincide with the large structures that characterize the Tyrrhenian-Apennine area.&lt;br&gt;The Tyrrhenian extension directions are indicators of the Euler poles of the individual polygons, in the Sardo-Corso block reference frame. The velocity ratios were determined by the slip vectors of the structures (plate boundaries) that separates the polygons. The rotation time and angle are determined respectively: using the stratigraphic records of the syn-rift sequences and comparing the crustal balance with the speed ratios.&lt;br&gt;At the end including the new kinematic framework in the global rotation model we were able to reconstruct the tectonic evolution of the central Mediterranean during the opening of the Tyrrhenian basin.&lt;/p&gt;


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 177
Author(s):  
Eugenio Turco ◽  
Chiara Macchiavelli ◽  
Giulia Penza ◽  
Antonio Schettino ◽  
Pietro Paolo Pierantoni

We describe the opening of back-arc basins and the associated formation of accretionary wedges through the application of techniques of deformable plate kinematics. These methods have proven to be suitable to describe complex tectonic processes, such as those that are observed along the Africa–Europe collision belt. In the central Mediterranean area, these processes result from the passive subduction of the lithosphere belonging to the Alpine Tethys and Ionian Ocean. In particular, we focus on the opening of the Tyrrhenian basin and the contemporary formation of the Apennine chain. We divide the area of the Apennine Chain and the Tyrrhenian basin into deformable polygons that are identified on the basis of sets of extensional structures that are coherent with unique Euler pole grids. The boundaries between these polygons coincide with large tectonic lineaments that characterize the Tyrrhenian–Apennine area. The tectonic style along these structures reflects the variability of relative velocity vectors between two adjacent blocks. The deformation of tectonic elements is accomplished, allowing different rotation velocities of lines that compose these blocks about the same stable stage poles. The angular velocities of extension are determined on the basis of the stratigraphic records of syn-rift sequences, while the rotation angles are obtained by crustal balancing.


2019 ◽  
Vol 20 (2) ◽  
pp. 33-41
Author(s):  
Khafsah Joebaedi ◽  
Iin Irianingsih ◽  
Badrulfalah Badrulfalah ◽  
Dwi Susanti ◽  
Kankan Parmikanti

Space Time Auto Regressive(1;1)  Model or STAR(1;1)  model is a form of model that involves location and time. The STAR(1;1)  model is a stationary space time model in mean and variance. The STAR model can be used to forecast future observations at these locations by involving the effects of observations at other nearby locations in spatial lag 1 and lag time 1 [2]. The STAR model can be written as a linear model assuming that error is normally distributed with zero mean and constant variance. In this research, the parameter estimation procedure for STAR model using binary weight, MKT method and STAR model for the estimation of petroleum production in 3 wells is assumed to be in a homogeneous reservoir.


2020 ◽  
Author(s):  
Eugenio Turco ◽  
Chiara Macchiavelli ◽  
Pietro Paolo Pierantoni ◽  
Giulia Penza ◽  
Antonio Schettino

&lt;p&gt;The Africa Europe collision, which produces the formation of the Alpine arc, in the Mediterranean area is accompanied by passive subduction processes, resulting from the sinking of the remnant Alpine Tethys and the Ionian lithosphere, and from the fragmentation of the Adriatic plate. In this complex deformation, back-arc basins (Alboran, Balearic, Tyrrhenian and Hellenic) and circum - Mediterranean mountain ranges are formed.&lt;/p&gt;&lt;p&gt;In this work we focus our attention on the opening of the Tyrrhenian basin and the contemporary formation of the Apennine chain.&lt;/p&gt;&lt;p&gt;In order to describe the evolution of the geodynamic processes that guided the formation of the Tyrrhenian basin and the Apennine chain we used the plate kinematics technique. Through careful observation of the regional structures we have divided the area of the Apennine Chain and the Tyrrhenian basin into polygons (crustal blocks or microplates) distinguished on the basis of the direction of the Tyrrhenian extension. The boundary between the polygons has been placed coinciding with the large structures that characterize the Tyrrhenian-Apennine area. The rotation poles of the individual polygons, in the frame of reference of the Sardo-Corso block, are based on the Tyrrhenian extension directions that characterize them. The velocity ratio between the polygons was determined by the slip vector of the structure (plate boundary) that separates them. To determine the rotation time of the polygons we used the stratigraphic records of the syn-rift sequences, while the rotation angle of the polygons is obtained comparing the crustal balance with the speed ratios.&lt;/p&gt;&lt;p&gt;Finally, the kinematic framework obtained, included in the global rotation model, allowed us to reconstruct the tectonic evolution of the central Mediterranean during the opening of the Tyrrhenian basin.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Key Words&lt;/strong&gt;: Tyrrhenian-Apennine System, Non-rigid plate kinematics.&lt;/p&gt;


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 678
Author(s):  
Kamel Atrouz ◽  
Ratiba Bousba ◽  
Francesco Paolo Marra ◽  
Annalisa Marchese ◽  
Francesca Luisa Conforti ◽  
...  

Olive tree with its main final product, olive oil, is an important element of Mediterranean history, considered the emblematic fruit of a civilization. Despite its wide diffusion and economic and cultural importance, its evolutionary and phylogenetic history is still difficult to clarify. As part of the Mediterranean basin, Algeria was indicated as a secondary diversification center. However, genetic characterization studies from Maghreb area, are currently underrepresented. In this context, we characterized 119 endemic Algerian accessions by using 12 microsatellite markers with the main goal to evaluate the genetic diversity and population structure. In order to provide new insights about the history of olive diversification events in the Central-Western Mediterranean basin, we included and analyzed a sample of 103 Italian accessions from Sicily and, a set of molecular profiles of cultivars from the Central-Western Mediterranean area. The phylogenetic investigation let us to evaluate genetic relationships among Central-Mediterranean basin olive germplasm, highlight new synonymy cases to support the importance of vegetative propagation in the cultivated olive diffusion and consolidate the hypothesis of more recent admixture events occurrence. This work provided new information about Algerian germplasm biodiversity and contributed to clarify olive diversification process.


2021 ◽  
Vol 58 (1) ◽  
pp. 42-67 ◽  
Author(s):  
Mads Stehr ◽  
Anders Rønn-Nielsen

AbstractWe consider a space-time random field on ${{\mathbb{R}^d} \times {\mathbb{R}}}$ given as an integral of a kernel function with respect to a Lévy basis with a convolution equivalent Lévy measure. The field obeys causality in time and is thereby not continuous along the time axis. For a large class of such random fields we study the tail behaviour of certain functionals of the field. It turns out that the tail is asymptotically equivalent to the right tail of the underlying Lévy measure. Particular examples are the asymptotic probability that there is a time point and a rotation of a spatial object with fixed radius, in which the field exceeds the level x, and that there is a time interval and a rotation of a spatial object with fixed radius, in which the average of the field exceeds the level x.


2000 ◽  
Vol 27 (17) ◽  
pp. 2709-2712 ◽  
Author(s):  
Alberto Álvarez ◽  
Cristóbal López ◽  
Margalida Riera ◽  
Emilio Hernández-García ◽  
Joaquín Tintoré

2016 ◽  
Vol 54 (11) ◽  
pp. 6659-6673 ◽  
Author(s):  
Zhihui Xin ◽  
Guisheng Liao ◽  
Zhiwei Yang ◽  
Yuhong Zhang ◽  
Hongxing Dang

2007 ◽  
Vol 46 (6) ◽  
pp. 742-756 ◽  
Author(s):  
Gyu Won Lee ◽  
Alan W. Seed ◽  
Isztar Zawadzki

Abstract The information on the time variability of drop size distributions (DSDs) as seen by a disdrometer is used to illustrate the structure of uncertainty in radar estimates of precipitation. Based on this, a method to generate the space–time variability of the distributions of the size of raindrops is developed. The model generates one moment of DSDs that is conditioned on another moment of DSDs; in particular, radar reflectivity Z is used to obtain rainfall rate R. Based on the fact that two moments of the DSDs are sufficient to capture most of the DSD variability, the model can be used to calculate DSDs and other moments of interest of the DSD. A deterministic component of the precipitation field is obtained from a fixed R–Z relationship. Two different components of DSD variability are added to the deterministic precipitation field. The first represents the systematic departures from the fixed R–Z relationship that are expected from different regimes of precipitation. This is generated using a simple broken-line model. The second represents the fluctuations around the R–Z relationship for a particular regime and uses a space–time multiplicative cascade model. The temporal structure of the stochastic fluctuations is investigated using disdrometer data. Assuming Taylor hypothesis, the spatial structure of the fluctuations is obtained and a stochastic model of the spatial distribution of the DSD variability is constructed. The consistency of the model is validated using concurrent radar and disdrometer data.


Sign in / Sign up

Export Citation Format

Share Document