extensional structures
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 17)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. Petrosino ◽  
L. De Siena

AbstractAmbient noise polarizes inside fault zones, yet the spatial and temporal resolution of polarized noise on gas-bearing fluids migrating through stressed volcanic systems is unknown. Here we show that high polarization marks a transfer structure connecting the deforming centre of the caldera to open hydrothermal vents and extensional caldera-bounding faults during periods of low seismic release at Campi Flegrei caldera (Southern Italy). Fluids pressurize the Campi Flegrei hydrothermal system, migrate, and increase stress before earthquakes. The loss of polarization (depolarization) of the transfer and extensional structures maps pressurized fluids, detecting fluid migrations after seismic sequences. After recent intense seismicity (December 2019-April 2020), the transfer structure appears sealed while fluids stored in the east caldera have moved further east. Our findings show that depolarized noise has the potential to monitor fluid migrations and earthquakes at stressed volcanoes quasi-instantaneously and with minimum processing.


2021 ◽  
Vol 62 ◽  
pp. 1-17
Author(s):  
Thomas Baltz ◽  
Michael Murphy ◽  
Suoya Fan ◽  
Deepak Chamlagain

The Thakkhola Graben has been a region of geologic inquiry for many decades. Although it is widely viewed to be in a class of structures that are important in accommodating the three-dimensional strain within the Himalayan thrust wedge, we still lack a detailed understanding of the total finite strain accommodated by graben-bounding faults, as well as their shape and cross-cutting relationships with structures deeper in the thrust wedge. Using geologic mapping and structural analysis, we show that a suite of pre-extensional shortening structures is offset by normal-oblique faults bounding the Thakkhola Graben that we use to define a piercing line. We calculate these faults to have accommodated 8.7 kilometers of vertical thinning, 7.2 kilometers of arc-perpendicular shear, and only 2.2 kilometers of arc-parallel extension. The magnitude of arc-parallel extension is quite low compared to extensional structures to the west in the Gurla Mandhata-Humla region. The cross-cutting relationships established in this study and timing constraints determined by previous works are consistent with a structural history of crustal thickening leading to foreland propagation of the locus of arc-perpendicular shortening contemporaneous with hinterland extension.


2021 ◽  
Author(s):  
Peter Biermanns ◽  
Benjamin Schmitz ◽  
Silke Mechernich ◽  
Christopher Weismüller ◽  
Kujtim Onuzi ◽  
...  

Abstract. We describe two previously unreported, 5–7 km long normal fault scarps (NFS) occurring atop fault-related anticlines in the coastal ranges of the Dinarides fold-and-thrust belt in southern Montenegro, a region under predominant contraction. Both NFS show well-exposed, 6–9 m high, striated and locally polished fault surfaces in limestones, documenting active faulting during the Holocene. Sharply delimited ribbons on free rock faces show different color, varying karstification and lichen growth and suggest stepwise footwall exhumation, typical of repeated normal faulting earthquake events. Displacements, surface rupture lengths and geometries of the outcropping fault planes imply paleoearthquakes with Mw ≈ 6 ± 0.5 and slip rates of c. 0.3–0.5 mm/yr since the Last Glacial Maximum. Slip rates based on cosmogenic 36Cl data from the scarps are significantly higher: modeling suggests 1.5 ± 0.1 mm/yr and 6–15 cm slip every c. 35–100 yrs, commencing c. 6 kyr ago. The total throw on both NFS – although poorly constrained – is estimated to max. 200 m, and offsets the basal thrust of a regionally important tectonic unit. Both NFS are incipient extensional structures that postdate growth of the fault-related anticlines on top of which they occur. Interestingly, the position of the extensional features agrees with recent geodetic data, suggesting that our study area is located exactly at the transition from NE-SW-directed shortening in the northwest to NE-SW-directed extension to the southeast. While the contraction reflects ongoing Adria-Europe convergence taken up along the frontal portions of the Dinarides, the incipient extensional structures might be induced by rollback of the Hellenic slab in the SE, whose effects on the upper plate appear to be migrating along-strike the Hellenides towards the northwest. The newly found NFS provide evidence for a kinematic change of a thrust belt segment over time. Alternatively, the NFS might be regarded as second-order features accommodating changes in dip of the underlying first-order thrust faults to which they are tied genetically.


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 177
Author(s):  
Eugenio Turco ◽  
Chiara Macchiavelli ◽  
Giulia Penza ◽  
Antonio Schettino ◽  
Pietro Paolo Pierantoni

We describe the opening of back-arc basins and the associated formation of accretionary wedges through the application of techniques of deformable plate kinematics. These methods have proven to be suitable to describe complex tectonic processes, such as those that are observed along the Africa–Europe collision belt. In the central Mediterranean area, these processes result from the passive subduction of the lithosphere belonging to the Alpine Tethys and Ionian Ocean. In particular, we focus on the opening of the Tyrrhenian basin and the contemporary formation of the Apennine chain. We divide the area of the Apennine Chain and the Tyrrhenian basin into deformable polygons that are identified on the basis of sets of extensional structures that are coherent with unique Euler pole grids. The boundaries between these polygons coincide with large tectonic lineaments that characterize the Tyrrhenian–Apennine area. The tectonic style along these structures reflects the variability of relative velocity vectors between two adjacent blocks. The deformation of tectonic elements is accomplished, allowing different rotation velocities of lines that compose these blocks about the same stable stage poles. The angular velocities of extension are determined on the basis of the stratigraphic records of syn-rift sequences, while the rotation angles are obtained by crustal balancing.


2021 ◽  
Author(s):  
Tim Gray ◽  
Judith Kinnaird ◽  
Justin Laberge ◽  
Alejandro Caballero

Abstract This study combines historical exploration data with new mapping, underpinned by airborne hyperspectral imagery, to provide a detailed camp-scale geologic view of the Rössing uranium mine area in the Damara orogen, Namibia. The Neoproterozoic Damaran metasedimentary host rocks to uranium deposits of the Rössing area structurally overlie Paleoproterozoic basement rock. Both units were subjected to polyphase deformation and upper amphibolite to lower granulite facies metamorphism during Pan-African orogenesis. The sequence was voluminously intruded by leucogranites, where younger phases may contain ore-grade uranium as magmatic uraninite and traces of betafite, together with secondary uranium minerals. Early, postdepositional modifications to the Damaran sequence included partial dolomitization of marble units and development of evaporite dissolution and diapiric breccias. Major pre-D3 extensional structures developed in conjunction with recumbent, isoclinal folding and acted to focus the intrusion of early, mostly barren leucogranites generated primarily through anatexis of Damaran metasediments. Syn-D4 leucogranites overprint complex interference fold geometries that resulted from D3 deformation. D4 leucogranites were emplaced under predominantly ductile, transtensional conditions, into NNE-trending zones oriented highly oblique to all preexisting structures. These steeply dipping zones provided the prerequisite conditions for partial melt material to be derived from uraniferous basement lithologies. The concentration of magmatic uranium was promoted where leucogranite melt material interacted with carbonates and sulfide-bearing Damaran metasedimentary units. In the Rössing area these horizons occur at the Khan-Rössing Formation contact zone for the SJ, SK, SH, Z20, and Husab deposits and within and above the Arandis Formation for the Z19 deposit leucogranites.


2021 ◽  
Author(s):  
Etienne Legeay ◽  
Geoffroy Mohn ◽  
Jean-Claude Ringenbach ◽  
William Vetel

<p>Before Break-Up, the opening of the South China Sea Passive Margin (SCS) was characterized by a wide rift mode during Cenozoic rifting. Such wide extensional margin (>600 km wide) is controlled by a set of hyper-extended sub-basins separated by basement highs.</p><p>These basins infill recorded a polyphased extensional deformation hence resulting in complex 3D sedimentary evolution. Based on a recent industrial 3D seismic reflection survey along the Sabah area (southern margin of the SCS), this contribution aims to investigate the detailed 3D geometries of extensional structures as well as their control on the overlying successive sedimentary sequences and relation to crustal deformation.</p><p>We mapped and analyzed several crustal-scale rolling hinge structures controlled by a series of low-angle normal faults. Deeper crustal levels are likely exhumed along the core of these rolling hinge structures, separated by extensional allochthones blocs of upper continental crust. Our structural analysis enables us to identify three main extensional phases corresponding to distinct sedimentary packages: (1) a synrift sequence 1 controlled by small offset normal faults formed during incipient rifting; (2) an intermediate synrift sequence 2 recording the development of extensional detachment faults. (3) a thick syn-rift sequence 3 recording a continuation of extension along the detachment faults resulting in the dismembering of the syn-<br>rift sequence 2. Intra-basement seismic reflectors dipping towards the north-west are observed, onto which extensional structures often seem to root. Some of these reflectors are interpreted as interleaved thrust sheets from a dismantled accretionary wedge of the former Mesozoic active margin (Yenshanian magmatic Arc).</p><p>Our results provide new key observations on the 3D mechanisms of detachment faulting and its control on sedimentary evolution as well as coeval crustal deformation. 3D approach throw some light on the detailed geometries of a metamorphic core-complex in relation with crustal boudinage, shear zones and lower/middle crust exhumation below the syn- rift sediments. These geometries can be compared to those described in the Basin and Range province or the Aegean Sea. Consequently, our results have implications for our understanding of rift and breakup mechanisms of marginal basins as a whole.</p>


2021 ◽  
Author(s):  
Nicolò Bertone ◽  
Lorenzo Bonini ◽  
Anna Del Ben ◽  
Giuseppe Brancatelli ◽  
Angelo Camerlenghi ◽  
...  

<p>The present‐day tectonic setting of the Eastern Mediterranean Sea results from a long deformation history, characterized by an alternation of extensional and contractional phases: from Mesozoic rifting to Late Cretaceous-present-day compression. This study focused on the tectonic reconstruction of the north-eastern side of the Mediterranean Sea, on a sector located between the Turkish coast and the northern Levantine Basin, using seismic reflection profiles. Previous studies dealt with the recent (Neogene) evolution because they did not have enough depth of investigation to recognize deeper reflections. We used vintage data such as MS and Strakhov surveys to analyze the deeper part of the area. We interpreted and depth-converted these seismic data, and we developed a sequential restoration to reconstruct the stratigraphic and structural evolution of the study area. </p><p>In general, from north to south, we recognize the Cilicia Basin: a piggy-back basin bordered to the south by the offshore continuation of the Kyrenia Range. The Kyrenia Range is a positive flower structure generated during a transpressional phase because of the rotation of the Arabic plate. Southward, a secondary contractional system with an onlapping wedge is present in the area between the Kyrenia Range and another prominent ridge, i.e. the Larnaca Ridge. In the southern part, the same transpressional phase that generated the Kyrenia Range led to a positive inversion of an ancient extensional system, i.e. the Latakia Ridge. Beyond these positive flowers, the Levantine Basin is affected by extensional structures showing weak positive reactivation, including halokinetic features.</p><p>In summary, we found that the inherited extensional structures strongly impacted the following contractional ones affecting both their geometry and their kinematics.</p>


2021 ◽  
Author(s):  
Michael Warsitzka ◽  
Prokop Závada ◽  
Fabian Jähne-Klingberg ◽  
Piotr Krzywiec

<p>Salt flow in rift basins is mainly driven by sub- and supra-salt extension imposing shear stresses and differential loading on the salt layer. In many rift basins, the graben flanks are tilted as a result of thermal subsidence and sediment load. Such tilt induces additional basin-ward directed stresses potentially causing downward directed salt flow and gravity gliding of the supra-salt overburden. However, sediment loading in extensional basins is usually largest in the basin centre, which would lead to an upward directed salt expulsion and might act as an effective buttress resisting downward gliding.</p><p>Our aim is to investigate the opposing influence of sub-salt extension, sedimentary loading and tilting on deformation patterns in the viscous salt and the brittle overburden. We try to assess under which geological configurations (e.g. minimum basin slope or topographic gradient) upward directed salt flow and downward directed gravity gliding are the dominating deformation processes in extensional basins. Therefore, we developed a new analogue modelling apparatus enabling to simulate the processes of tectonic extension of a graben structure and the gradual tilting of the graben flanks, acting either simultaneously or separately. Using digital image correlation technique, temporal and spatial changes of the displacement and strain patterns can be analysed. Cross sections through the final experiments enable to identify structures characteristic for specific driving processes.</p><p>Here, we present results of a preliminary experimental study in which the basic influence of flank tilting and syn-kinematic sedimentation on salt tectonics in rift basins is examined. In case that the graben flanks remain flat during extension, widespread extensional fault zones develop on the footwall sides near the graben faults. In case that the flanks are tilted simultaneously with basal extension, additional extensional fault zones evolve at the upslope basin margins resulting from downward gliding of the overburden. In the downslope basin centre, this peripheral extension is balanced by reduced amounts of extension near the graben and later by shortening above the graben bounding faults and the hanging wall graben centre. If syn-kinematic sedimentation is introduced, downslope gravity gliding is significantly reduced and extensional fault zones are rather localized. Peripheral extensional structures observed in the experiments resemble typical thin-skinned extensional structures occurring at the flanks of many salt-bearing rift basins, e.g. the Polish Basin and Norwegian-Danish Basin. Thus, such structures might serve as diagnostic indicators for the occurrence of gravity gliding in rift basins.</p>


2021 ◽  
pp. 1-53
Author(s):  
Jennifer Leslie-Panek ◽  
Margot McMechan

The Liard Basin is an important sub-basin of the Western Canada Sedimentary Basin located in Northeast British Columbia along the eastern margin of the Canadian Cordillera. It contains significant potential unconventional gas resources but is largely underrepresented in public literature. Using available-for-purchase 2D seismic data, a regional structural interpretation of the basin was completed providing the first seismically controlled, high-level overview of the structural features of the basin and its surrounding area. The shape of the Liard Basin largely reflects the orientation of older Paleozoic and Proterozoic extensional structures that localized structures formed during Cretaceous - Tertiary compressive deformation. The eastern boundary of the basin is marked by the well-documented Bovie Structure. The Liard Anticline and the Liard River Anticline found near 60o N latitude are the only large structures located within the Liard Basin proper. Inversion of the herein named Liard Basin Boundary Structure, a west-side-down fault zone of Early Paleozoic age, localized the northwest boundary of the basin with the Liard Fold and Thrust Belt. A triangle zone bounds the Rocky Mountain Foothills and the Liard Basin to the southwest. Reflectors in the Proterozoic strata below the Liard Basin were deformed by compressive and then extensional structures prior to the deposition of Paleozoic strata. Proterozoic strata are involved in all the major structures of the adjacent Liard Fold and Thrust Belt, the Rocky Mountain Foothills and the Bovie Structure. These structures controlled the location of the Liard Basin.


Sign in / Sign up

Export Citation Format

Share Document