scholarly journals Behavioral phenotype and autism spectrum disorders in Cornelia de Lange syndrome

2015 ◽  
Vol 7 (2) ◽  
Author(s):  
Lucia Parisi ◽  
Teresa Di Filippo ◽  
Michele Roccella

Cornelia de Lange syndrome (CdLS) is a congenital disorder characterized by distinctive facial features, growth retardation, limb abnormalities, intellectual disability, and behavioral problems. Cornelia de Lange syndrome is associated with abnormalities on chromosomes 5, 10 and X. Heterozygous point mutations in three genes (<em>NIPBL</em>, <em>SMC3</em> and <em>SMC1A</em>), are responsible for approximately 50-60% of CdLS cases. CdLS is characterized by autistic features, notably excessive repetitive behaviors and expressive language deficits. The prevalence of autism spectrum disorder (ASD) symptomatology is comparatively high in CdLS. However, the profile and developmental trajectories of these ASD characteristics are potentially different to those observed in individuals with idiopathic ASD. A significantly higher prevalence of self-injury are evident in CdLS. Self-injury was associated with repetitive and impulsive behavior. This study describes the behavioral phenotype of four children with Cornelia de Lange syndrome and ASDs and rehabilitative intervention that must be implemented.

2015 ◽  
Vol 7 (2) ◽  
pp. 32-35 ◽  
Author(s):  
Lucia Parisi ◽  
Teresa Di Filippo ◽  
Michele Roccella

Cornelia de Lange syndrome (CdLS) is a congenital disorder characterized by distinctive facial features, growth retardation, limb abnormalities, intellectual disability, and behavioral problems. Cornelia de Lange syndrome is associated with abnormalities on chromosomes 5, 10 and X. Heterozygous point mutations in three genes (NIPBL, SMC3 and SMC1A), are responsible for approximately 50-60% of CdLS cases. CdLS is characterized by autistic features, notably excessive repetitive behaviors and expressive language deficits. The prevalence of autism spectrum disorder (ASD) symptomatology is comparatively high in CdLS. However, the profile and developmental trajectories of these ASD characteristics are potentially different to those observed in individuals with idiopathic ASD. A significantly higher prevalence of self-injury are evident in CdLS. Self-injury was associated with repetitive and impulsive behavior. This study describes the behavioral phenotype of four children with Cornelia de Lange syndrome and ASDs and rehabilitative intervention that must be implemented.


Children ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 96
Author(s):  
Martina Siracusano ◽  
Eugenia Segatori ◽  
Assia Riccioni ◽  
Leonardo Emberti Gialloreti ◽  
Paolo Curatolo ◽  
...  

Children with autism spectrum disorder (ASD) and their families have represented a fragile population on which the extreme circumstances of the COVID-19 outbreak may have doubly impaired. Interruption of therapeutical interventions delivered in-person and routine disruption constituted some of the main challenges they had to face. This study investigated the impact of the COVID-19 lockdown on adaptive functioning, behavioral problems, and repetitive behaviors of children with ASD. In a sample of 85 Italian ASD children (mean age 7 years old; 68 males, 17 females), through a comparison with a baseline evaluation performed during the months preceding COVID-19, we evaluated whether after the compulsory home confinement any improvement or worsening was reported by parents of ASD individuals using standardized instruments (Adaptive Behavior Assessment System (Second Edition), Achenbach Child Behavior Checklist, Repetitive Behavior Scale-Revised). No significant worsening in the adaptive functioning, problematic, and repetitive behaviors emerged after the compulsory home confinement. Within the schooler children, clinical stability was found in reference to both adaptive skills and behavioral aspects, whereas within preschoolers, a significant improvement in adaptive skills emerged and was related to the subsistence of web-delivered intervention, parental work continuance, and online support during the lockdown.


2021 ◽  
Vol 27 (3) ◽  
pp. 3939-3946
Author(s):  
Sevginar Ibryamova ◽  
◽  
Veselin Petkov ◽  
Tsveteslava Ignatova-Ivanova ◽  
Georgi Kolev ◽  
...  

Autism is a complex disorder without a specific diagnosis, so the disease is defined by its specific characteristics described in the literature as cognitive defects, social, communication and behavioral problems, repetitive behaviors, unusual sensitivity to stimuli such as noise, restricted interests, and self stimulation. There are many models in the literature explaining the biology of autism, which are based on genetics, immunity, various environmental factors and diet. There is a lot of literature data that people with Autism Spectrum Disorders (ASD) often have gastrointestinal problems that also affect their behavior. ASD suffer developmental disabilities from an early age, which can be both physical and psychological. Often people suffer these problems even throughout their lives. This review aims to provide basic information on definitions, historical data, diagnostic methods, behavioral etiology, gastrointestinal and social problems in adults and children with ASD.


2015 ◽  
Vol 112 (8) ◽  
pp. 2551-2556 ◽  
Author(s):  
Michael A. Bemben ◽  
Quynh-Anh Nguyen ◽  
Tongguang Wang ◽  
Yan Li ◽  
Roger A. Nicoll ◽  
...  

Autism spectrum disorders (ASDs) comprise a highly heritable, multifarious group of neurodevelopmental disorders, which are characterized by repetitive behaviors and impairments in social interactions. Point mutations have been identified in X-linked Neuroligin (NLGN) 3 and 4X genes in patients with ASDs and all of these reside in their extracellular domains except for a single point mutation in the cytoplasmic domain of NLGN4X in which an arginine is mutated to a cysteine (R704C). Here we show that endogenous NLGN4X is robustly phosphorylated by protein kinase C (PKC) at T707, and R704C completely eliminates T707 phosphorylation. Endogenous NLGN4X is intensely phosphorylated on T707 upon PKC stimulation in human neurons. Furthermore, a phospho-mimetic mutation at T707 has a profound effect on NLGN4X-mediated excitatory potentiation. Our results now establish an important interplay between a genetic mutation, a key posttranslational modification, and robust synaptic changes, which can provide insights into the synaptic dysfunction of ASDs.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Serap Bilge ◽  
Barış Ekici

Abstract Introduction Autism spectrum disorder is a neurodevelopmental disorder characterized by deficits in communication, social interaction, restricted interest, and repetitive behaviors. Although more cases are being diagnosed, no drugs are approved to treat the core symptoms or cognitive and behavioral problems associated with autism. Therefore, there is an urgent need to develop an effective and safe treatment. Objective In this study, we aim to share our 2-year experience with CBD-enriched cannabis treatment in autism and review the latest studies. Materials and methods The study included 33 (27 males, six females) children diagnosed with autism spectrum disorder who were followed up between January 2018 and August 2020. The mean age was 7.7 ± 5.5 years. The average daily dosage of cannabidiol (CBD) was 0.7 mg/kg/day (0.3–2 mg/kg/day). The median duration of treatment was 6.5 months (3–28 months). The preparations used in this study contained full-spectrum CBD and trace elements tetrahydrocannabinol (THC) of less than 3%. Results The outcomes were evaluated before and after treatment based on clinical interviews. At each follow-up visit, parents were asked to evaluate the effectiveness of the CBD-enriched cannabis treatment. According to the parents’ reports, no change in daily life activity was reported in 6 (19.35%) patients. The main improvements of the treatment were as follows: a decrease in behavioral problems was reported in 10 patients (32.2%), an increase in expressive language was reported in 7 patients (22.5%), improved cognition was reported in 4 patients (12,9%), an increase in social interaction was reported in 3 patients (9.6%), and a decrease in stereotypes was reported in 1 patient (3.2%). The parents reported improvement in cognition among patients who adhered to CBD-enriched cannabis treatment for over two years. The antipsychotic drug could be stopped only in one patient who showed mild ASD symptoms. No change could be made in other drug use and doses. Additionally, this study includes an extensive review of the literature regarding CBD treatment in autism spectrum disorder. According to recent studies, the average dose of CBD was 3.8±2.6 mg/kg/day. The ratio of CBD to THC in the used preparations was 20:1. The most significant improvements were seen in the behavioral problems reported in 20–70% of the patients. Conclusion Using lower doses of CBD and trace THC seems to be promising in managing behavioral problems associated with autism. In addition, this treatment could be effective in managing the core symptoms and cognitive functions. No significant side effects were seen at the low doses of CBD-enriched cannabis when compared to other studies.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 28
Author(s):  
Iris W. Riemersma ◽  
Robbert Havekes ◽  
Martien J. H. Kas

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is characterized by differences in social interaction, repetitive behaviors, restricted interests, and sensory differences beginning early in life. Especially sensory symptoms are highly correlated with the severity of other behavioral differences. ASD is a highly heterogeneous condition on multiple levels, including clinical presentation, genetics, and developmental trajectories. Over a thousand genes have been implicated in ASD. This has facilitated the generation of more than two hundred genetic mouse models that are contributing to understanding the biological underpinnings of ASD. Since the first symptoms already arise during early life, it is especially important to identify both spatial and temporal gene functions in relation to the ASD phenotype. To further decompose the heterogeneity, ASD-related genes can be divided into different subgroups based on common functions, such as genes involved in synaptic function. Furthermore, finding common biological processes that are modulated by this subgroup of genes is essential for possible patient stratification and the development of personalized early treatments. Here, we review the current knowledge on behavioral rodent models of synaptic dysfunction by focusing on behavioral phenotypes, spatial and temporal gene function, and molecular targets that could lead to new targeted gene-based therapy.


2010 ◽  
Vol 22 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Jennifer Richler ◽  
Marisela Huerta ◽  
Somer L. Bishop ◽  
Catherine Lord

AbstractThis study examined how restricted and repetitive behaviors and interests (RRBs) developed over time in a sample of children with autism spectrum disorders (ASD). One hundred ninety-two children referred for a diagnosis of autism at age 2, and 22 children with nonspectrum development disorders were evaluated with a battery of cognitive and diagnostic measures at age 2 and subsequently at ages 3, 5, and 9. Factor analysis of the RRB items on the Autism Diagnostic Interview–Revised revealed two RRB factors at each wave of data collection, one comprising “repetitive sensorimotor” (RSM) behaviors and the other “insistence on sameness” (IS) behaviors. For children with ASD, RSM scores remained relatively high over time, indicating consistent severity, whereas IS scores started low and increased over time, indicating worsening. Having a higher nonverbal intelligence (NVIQ) at age 2 was associated with milder concurrent RSM behaviors and with improvement in these behaviors over time. There was no relationship between NVIQ at age 2 and IS behaviors. However, milder social/communicative impairment, at age 2 was associated with more severe concurrent IS behaviors. Trajectory analysis revealed considerable heterogeneity in patterns of change over time for both kinds of behaviors. These findings are discussed in terms of their implications for our understanding of RRBs in ASD and other disorders, making prognoses about how RRBs will develop in children with ASD as they get older, and using RRBs to identify ASD phenotypes in genetic studies.


2014 ◽  
Vol 23 (1) ◽  
pp. 57-72 ◽  
Author(s):  
Devon Carroll ◽  
Victoria Hallett ◽  
Christopher J. McDougle ◽  
Michael G. Aman ◽  
James T. McCracken ◽  
...  

Author(s):  
Kazuto Okabe ◽  
Ryuji Kaneko ◽  
Takamasa Kawai ◽  
Fumiya Kano ◽  
Yuya Ohta ◽  
...  

2021 ◽  
pp. 1-14
Author(s):  
A. Havdahl ◽  
M. Niarchou ◽  
A. Starnawska ◽  
M. Uddin ◽  
C. van der Merwe ◽  
...  

Abstract Autism spectrum disorder (autism) is a heterogeneous group of neurodevelopmental conditions characterized by early childhood-onset impairments in communication and social interaction alongside restricted and repetitive behaviors and interests. This review summarizes recent developments in human genetics research in autism, complemented by epigenetic and transcriptomic findings. The clinical heterogeneity of autism is mirrored by a complex genetic architecture involving several types of common and rare variants, ranging from point mutations to large copy number variants, and either inherited or spontaneous (de novo). More than 100 risk genes have been implicated by rare, often de novo, potentially damaging mutations in highly constrained genes. These account for substantial individual risk but a small proportion of the population risk. In contrast, most of the genetic risk is attributable to common inherited variants acting en masse, each individually with small effects. Studies have identified a handful of robustly associated common variants. Different risk genes converge on the same mechanisms, such as gene regulation and synaptic connectivity. These mechanisms are also implicated by genes that are epigenetically and transcriptionally dysregulated in autism. Major challenges to understanding the biological mechanisms include substantial phenotypic heterogeneity, large locus heterogeneity, variable penetrance, and widespread pleiotropy. Considerable increases in sample sizes are needed to better understand the hundreds or thousands of common and rare genetic variants involved. Future research should integrate common and rare variant research, multi-omics data including genomics, epigenomics, and transcriptomics, and refined phenotype assessment with multidimensional and longitudinal measures.


Sign in / Sign up

Export Citation Format

Share Document