scholarly journals Selective Activation of Shoulder, Trunk, and Arm Muscles: A Comparative Analysis of Different Push-Up Variants

2015 ◽  
Vol 50 (11) ◽  
pp. 1126-1132 ◽  
Author(s):  
Giuseppe Marcolin ◽  
Nicola Petrone ◽  
Tatiana Moro ◽  
Giuseppe Battaglia ◽  
Antonino Bianco ◽  
...  

Context The push-up is a widely used exercise for upper limb strengthening that can be performed with many variants. A comprehensive analysis of muscle activation during the ascendant phase (AP) and descendant phase (DP) in different variants could be useful for trainers and rehabilitators. Objective To obtain information on the effect of different push-up variants on the electromyography (EMG) of a large sample of upper limb muscles and to investigate the role of the trunk and abdomen muscles during the AP and DP. Design Cross-sectional study. Setting University laboratory. Patients or Other Participants Eight healthy, young volunteers without a history of upper extremity or spine injury. Intervention(s) Participants performed a set of 10 repetitions for each push-up variant: standard, wide, narrow, forward (FP), and backward (BP). Surface EMG of 12 selected muscles and kinematics data were synchronously recorded to describe the AP and DP. Main Outcome Measure(s) Mean EMG activity of the following muscles was analyzed: serratus anterior, deltoideus anterior, erector spinae, latissimus dorsi, rectus abdominis, triceps brachii caput longus, triceps brachii caput lateralis, obliquus externus abdominis, pectoralis major sternal head, pectoralis major clavicular head, trapezius transversalis, and biceps brachii. Results The triceps brachii and pectoralis major exhibited greater activation during the narrow-base variant. The highest activation of abdomen and back muscles was recorded for the FP and BP variants. The DP demonstrated the least electrical activity across all muscles, with less marked differences for the abdominal and erector spinae muscles because of their role as stabilizers. Conclusions Based on these findings, we suggest the narrow-base variant to emphasize triceps and pectoralis activity and the BP variant for total upper body strength conditioning. The FP and BP variants should be implemented carefully in participants with low back pain because of the greater activation of abdominal and back muscles.

2011 ◽  
Vol 23 (01) ◽  
pp. 75-82 ◽  
Author(s):  
Yu-Lin Ning ◽  
Jia-Da Li ◽  
Wei-Ching Lo ◽  
Chih-Hung Huang ◽  
Chu-Fen Chang ◽  
...  

Adequate pattern and consistency of the muscle recruitment is essential to symbolize the destruction of the opponent with high movement velocities and precise targeting of the opponent's head and body during a karate jab. The purpose of this study was to evaluate the reaction time (RT), motor time (MT), and total response time (TRT), as well as their correlation during a karate jab, and to investigate the recruitment pattern and consistency of muscles during motor time. As many as 14 professional karate athletes (age: 23.67 ± 2.64 years; height: 174.57 ± 7.13 cm; and weight: 72.75 ± 10.65 kg) participated in the current study. Each subject was instructed to pose in combat stance first and then to use their left hand to jab at an instrumented kicking target as soon as they saw the start signal. Surface electromyograms (EMGs) were recorded from 16 muscles, namely the pronator teres, biceps brachii, triceps brachii, and deltoid of the left upper limb, right erector spinae, left rectus abdominis, and gluteus maximus, rectus femoris, biceps femoris, tibialis anterior, and medial gastrocnemius of the right and left lower limbs. Start and stop signals from the instrumented target were also recorded synchronously to obtain the TRT. Significant correlation between MT and TRT indicated that MT was a key determinant for the TRT of the jab. When performing a karate jab, the karate athletes initiated the movement with postural adjustments of the legs and trunk prior to the onset of the voluntary jab by the upper limb, and with a proximal-to-distal sequence of muscle activation in the left arm. Good consistencies of muscle recruitment of the trunk, left arm, and leg, and cocontraction of the left triceps and biceps brachii also indicated a well-controlled jab by the left arm. These results provide important information on the patterns and the consistencies of the muscle recruitment for coaching a karate jab, which should be helpful for a better understanding of the motor control strategies of a karate jab and for developing a suitable training protocol.


2015 ◽  
Vol 9 (2) ◽  
Author(s):  
Johann Peter Kuhtz-Buschbeck ◽  
Antonia Frendel

<p>Background: Arm swing is deliberately emphasized during power walking, a popular aerobic fitness exercise. Electromyographic (EMG) activation curves of arm and shoulder muscles during power walking have not yet been examined. Aim: To describe the amount and pattern of EMG activity of upper limb muscles during power walking. Data are compared to normal walking and jogging. Method:  Twenty volunteers were examined on a treadmill at 6 km/h during (a) normal walking, (b) power walking, (c) jogging. EMG data were collected for the trapezius (TRAP), anterior (AD) and posterior deltoid (PD), biceps (BIC), triceps (TRI), latissimus dorsi (LD) and erector spinae (ES) muscles. Results:  Activity of four muscles (AD, BIC, PD, TRAP) was three- to fivefold stronger during power walking than normal walking. Smaller significant increases involved the TRI, LD and ES. Two muscles (AD, TRAP) were more active during power walking than running. Normal walking and power walking involved similar EMG patterns of PD, LD, ES, while EMG patterns of running and walking differed. Interpretation: Emphasizing arm swing during power walking triples the EMG activity of upper limb muscles, compared to normal walking. Similar basic temporal muscle activation patterns in both modes of walking indicate a common underlying motor program. </p>


2015 ◽  
Vol 9 (2) ◽  
Author(s):  
Johann Peter Kuhtz-Buschbeck ◽  
Antonia Frendel

Background: Arm swing is deliberately emphasized during power walking, a popular aerobic fitness exercise. Electromyographic (EMG) activation curves of arm and shoulder muscles during power walking have not yet been examined. Aim: To describe the amount and pattern of EMG activity of upper limb muscles during power walking. Data are compared to normal walking and jogging. Method: Twenty volunteers were examined on a treadmill at 6 km/h during (a) normal walking, (b) power walking, (c) jogging. EMG data were collected for the trapezius (TRAP), anterior (AD) and posterior deltoid (PD), biceps (BIC), triceps (TRI), latissimus dorsi (LD) and erector spinae (ES) muscles. Results: Activity of four muscles (AD, BIC, PD, TRAP) was three- to fivefold stronger during power walking than normal walking. Smaller significant increases involved the TRI, LD and ES. Two muscles (AD, TRAP) were more active during power walking than running. Normal walking and power walking involved similar EMG patterns of PD, LD, ES, while EMG patterns of running and walking differed. Interpretation: Emphasizing arm swing during power walking triples the EMG activity of upper limb muscles, compared to normal walking. Similar basic temporal muscle activation patterns in both modes of walking indicate a common underlying motor program.


2017 ◽  
Vol 26 (4) ◽  
pp. 281-286 ◽  
Author(s):  
Rafaela J.B. Torres ◽  
André L.T. Pirauá ◽  
Vinícius Y.S. Nascimento ◽  
Priscila S. dos Santos ◽  
Natália B. Beltrão ◽  
...  

The aim of this study was to evaluate the acute effect of the use of stable and unstable surfaces on electromyography (EMG) activity and coactivation of the scapular and upper-limb muscles during the push-up plus (with full protraction of the scapula). Muscle activation of anterior deltoid (AD), posterior deltoid (PD), pectoralis major, biceps brachii (BB), triceps brachii (TB), upper trapezius (UT), middle trapezius (MT), lower trapezius (LT), and serratus anterior (SA) levels and coactivation index were determined by surface EMG in 20 young men during push-up plus performed on a stable and unstable condition (2 unstable devices applied to hands and feet). The paired t test and Cohen d were used for statistical analysis. The results showed that during the execution of the push-up plus on the unstable surface an increased EMG activity of the scapular stabilizing muscles (SA, MT, and LT) was observed, while AD and PD muscles showed a decrease. During exercise execution on the unstable surface there was a higher index of coactivation of the scapular muscles (SA–MT and UT–LT pairs). No significant differences were observed in TB–BB and AD–PD pairs. These results suggest that the push-up-plus exercise associated with unstable surfaces produced greater EMG activity levels and coactivation index of the scapular stabilizing muscle. On the other hand, the use of an unstable surface does not promote the same effect for the shoulder muscles.


2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Johann Peter Kuhtz-Buschbeck ◽  
Antonia Frendel

<p>Background:  Arm swing during human gait is associated with contractions of upper limb muscles, which have been examined rarely.</p><p>Aim: This study aims to identify basic temporal patterns of upper limb muscle activation during walking conditions involving different modes of arm swing.</p><p>Method: Twenty volunteers were examined during (a) normal forward walking, (b) walking with immobilized arms, (c) walking while carrying loads in one or in both hands. Electromyographic (EMG) data were collected for the trapezius (TRAP), anterior (AD) and posterior deltoid (PD), biceps (BIC), triceps (TRI), latissimus dorsi (LD) and lumbar erector spinae (ES) muscles.</p><p>Results: Principal components analyses identified two basic patterns of muscle activation that remained stable across gait conditions. Some rhythmical EMG signals of arm and shoulder muscles (TRAP, PD, TRI, LD) persisted during walking with immobilized arms, indicating coupled activation of leg and arm muscles. Carrying a load in one hand resulted in stronger ipsilateral EMG activity (TRAP, AD, PD, BIC, TRI) than splitting the same load between both hands.</p><p>Interpretation: Although the amount of upper limb muscle activity varies markedly between different conditions of human walking (with/without arm sing; with/without load carriage), basic temporal activation patterns remain stable, indicating a common motor control strategy.</p><em><br clear="all" /> </em>


2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Johann Peter Kuhtz-Buschbeck ◽  
Antonia Frendel

Background:  Arm swing during human gait is associated with contractions of upper limb muscles, which have been examined rarely. Aim: This study aims to identify basic temporal patterns of upper limb muscle activation during walking conditions involving different modes of arm swing. Method: Twenty volunteers were examined during (a) normal forward walking, (b) walking with immobilized arms, (c) walking while carrying loads in one or in both hands. Electromyographic (EMG) data were collected for the trapezius (TRAP), anterior (AD) and posterior deltoid (PD), biceps (BIC), triceps (TRI), latissimus dorsi (LD) and lumbar erector spinae (ES) muscles. Results: Principal components analyses identified two basic patterns of muscle activation that remained stable across gait conditions. Some rhythmical EMG signals of arm and shoulder muscles (TRAP, PD, TRI, LD) persisted during walking with immobilized arms, indicating coupled activation of leg and arm muscles. Carrying a load in one hand resulted in stronger ipsilateral EMG activity (TRAP, AD, PD, BIC, TRI) than splitting the same load between both hands. Interpretation: Although the amount of upper limb muscle activity varies markedly between different conditions of human walking (with/without arm sing; with/without load carriage), basic temporal activation patterns remain stable, indicating a common motor control strategy.


1996 ◽  
Vol 12 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Robert U. Newton ◽  
William J. Kraemer ◽  
Keijo Häkkinen ◽  
Brendan J. Humphries ◽  
Aron J. Murphy

The aim of this study was to investigate the kinematics, kinetics, and neural activation of the traditional bench press movement performed explosively and the explosive bench throw in which the barbell was projected from the hands. Seventeen male subjects completed three trials with a bar weight of 45% of the subject's previously determined 1RM. Performance was significantly higher during the throw movement compared to the press for average velocity, peak velocity, average force, average power, and peak power. Average muscle activity during the concentric phase for pectoralis major, anterior deltoid, triceps brachii, and biceps brachii was higher for the throw condition. It was concluded that performing traditional press movements rapidly with light loads does not create ideal loading conditions for the neuromuscular system with regard to explosive strength production, especially in the final stages of the movement, because ballistic weight loading conditions where the resistance was accelerated throughout the movement resulted in a greater velocity of movement, force output, and EMG activity.


2018 ◽  
Vol 62 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Roland van den Tillaar ◽  
Atle Hole Saeterbakken

AbstractThe purpose of this study was to compare core muscle activation during a prone bridge (plank) until failure and 6-RM back squats. Twelve resistance-trained males (age 23.5 ± 2.6 years, body mass 87.8 ± 21.3 kg, body height 1.81 ± 0.08 m) participated in this study. Total exercise time and EMG activity of the rectus abdominis, external abdominal oblique and erector spinae were measured during 6-RM back squats and a prone bridge with a weight of 20% of participants’ body mass on their lower back. The main findings showed non-significant differences between the exercises in the rectus abdominis or external oblique, but greater erector spinae activation in squatting. Furthermore, in contrast to the prone bridge, the erector spinae and rectus abdominis demonstrated increasing muscle activation throughout the repetitions while squatting, whereas the prone bride demonstrated increasing external oblique activation between the beginning and the middle of the set. It was concluded that since squatting resulted in greater erector spine activation, but similar rectus abdominis and oblique external activation as the prone bridge, high-intensity squats rather than isometric low intensity core exercises for athletes would be recommended.


2009 ◽  
Vol 102 (3) ◽  
pp. 1420-1429 ◽  
Author(s):  
Gilles Hoffmann ◽  
Derek G. Kamper ◽  
Jennifer H. Kahn ◽  
William Z. Rymer ◽  
Brian D. Schmit

Neural coupling of proximal and distal upper limb segments may have functional implications in the recovery of hemiparesis after stroke. The goal of the present study was to investigate whether the stretch reflex response magnitude of spastic finger flexor muscles poststroke is influenced by sensory input from the shoulder and the elbow and whether reflex coupling of muscles throughout the upper limb is altered in spastic stroke survivors. Through imposed extension of the metacarpophalangeal (MCP) joints, stretch of the relaxed finger flexors of the four fingers was imposed in 10 relaxed stroke subjects under different conditions of proximal sensory input, namely static arm posture (3 different shoulder/elbow postures) and electrical stimulation (surface stimulation of biceps brachii or triceps brachii, or none). Fast (300°/s) imposed stretch elicited stretch reflex flexion torque at the MCP joints and reflex electromyographic (EMG) activity in flexor digitorum superficialis. Both measures were greatest in an arm posture of 90° of elbow flexion and neutral shoulder position. Biceps stimulation resulted in greater MCP stretch reflex flexion torque. Fast imposed stretch also elicited reflex EMG activity in nonstretched heteronymous upper limb muscles, both proximal and distal. These results suggest that in the spastic hemiparetic upper limb poststroke, sensorimotor coupling of proximal and distal upper limb segments is involved in both the increased stretch reflex response of the finger flexors and an increased reflex coupling of heteronymous muscles. Both phenomena may be mediated through changes poststroke in the spinal reflex circuits and/or in the descending influence of supraspinal pathways.


Sign in / Sign up

Export Citation Format

Share Document