scholarly journals Tree-ring evidence of recent climate changes in the Mackenzie Basin, Northwest Territories

2000 ◽  
Author(s):  
C Bégin ◽  
Y Michaud ◽  
S Archambault
The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Maegen L Rochner ◽  
Karen J Heeter ◽  
Grant L Harley ◽  
Matthew F Bekker ◽  
Sally P Horn

Paleoclimate reconstructions for the western US show spatial variability in the timing, duration, and magnitude of climate changes within the Medieval Climate Anomaly (MCA, ca. 900–1350 CE) and Little Ice Age (LIA, ca. 1350–1850 CE), indicating that additional data are needed to more completely characterize late-Holocene climate change in the region. Here, we use dendrochronology to investigate how climate changes during the MCA and LIA affected a treeline, whitebark pine ( Pinus albicaulis Engelm.) ecosystem in the Greater Yellowstone Ecoregion (GYE). We present two new millennial-length tree-ring chronologies and multiple lines of tree-ring evidence from living and remnant whitebark pine and Engelmann spruce ( Picea engelmannii Parry ex. Engelm.) trees, including patterns of establishment and mortality; changes in tree growth; frost rings; and blue-intensity-based, reconstructed summer temperatures, to highlight the terminus of the LIA as one of the coldest periods of the last millennium for the GYE. Patterns of tree establishment and mortality indicate conditions favorable to recruitment during the latter half of the MCA and climate-induced mortality of trees during the middle-to-late LIA. These patterns correspond with decreased growth, frost damage, and reconstructed cooler temperature anomalies for the 1800–1850 CE period. Results provide important insight into how past climate change affected important GYE ecosystems and highlight the value of using multiple lines of proxy evidence, along with climate reconstructions of high spatial resolution, to better describe spatial and temporal variability in MCA and LIA climate and the ecological influence of climate change.


2013 ◽  
Vol 9 (1) ◽  
pp. 119-133 ◽  
Author(s):  
D. Mottaghy ◽  
G. Schwamborn ◽  
V. Rath

Abstract. This study focuses on the temperature field observed in boreholes drilled as part of interdisciplinary scientific campaign targeting the El'gygytgyn Crater Lake in NE Russia. Temperature data are available from two sites: the lake borehole 5011-1 located near the center of the lake reaching 400 m depth, and the land borehole 5011-3 at the rim of the lake, with a depth of 140 m. Constraints on permafrost depth and past climate changes are derived from numerical simulation of the thermal regime associated with the lake-related talik structure. The thermal properties of the subsurface needed for these simulations are based on laboratory measurements of representative cores from the quaternary sediments and the underlying impact-affected rock, complemented by further information from geophysical logs and data from published literature. The temperature observations in the lake borehole 5011-1 are dominated by thermal perturbations related to the drilling process, and thus only give reliable values for the lowermost value in the borehole. Undisturbed temperature data recorded over more than two years are available in the 140 m deep land-based borehole 5011-3. The analysis of these observations allows determination of not only the recent mean annual ground surface temperature, but also the ground surface temperature history, though with large uncertainties. Although the depth of this borehole is by far too insufficient for a complete reconstruction of past temperatures back to the Last Glacial Maximum, it still affects the thermal regime, and thus permafrost depth. This effect is constrained by numerical modeling: assuming that the lake borehole observations are hardly influenced by the past changes in surface air temperature, an estimate of steady-state conditions is possible, leading to a meaningful value of 14 ± 5 K for the post-glacial warming. The strong curvature of the temperature data in shallower depths around 60 m can be explained by a comparatively large amplitude of the Little Ice Age (up to 4 K), with low temperatures prevailing far into the 20th century. Other mechanisms, like varying porosity, may also have an influence on the temperature profile, however, our modeling studies imply a major contribution from recent climate changes.


2017 ◽  
Vol 132 (1-2) ◽  
pp. 263-273 ◽  
Author(s):  
M. D. Hidalgo-Galvez ◽  
H. García-Mozo ◽  
J. Oteros ◽  
A. Mestre ◽  
R. Botey ◽  
...  

2014 ◽  
Vol 112 ◽  
pp. 79-91 ◽  
Author(s):  
Kun Yang ◽  
Hui Wu ◽  
Jun Qin ◽  
Changgui Lin ◽  
Wenjun Tang ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1002
Author(s):  
Rafael M. Navarro-Cerrillo ◽  
Antonio Gazol ◽  
Carlos Rodríguez-Vallejo ◽  
Rubén D. Manzanedo ◽  
Guillermo Palacios-Rodríguez ◽  
...  

Systematic forest networks of health monitoring have been established to follow changes in tree vigor and mortality. These networks often lack long-term growth data, but they could be complemented with tree ring data, since both defoliation and radial growth are proxies of changes in tree vigor. For instance, a severe water shortage should reduce growth and increase tree defoliation in drought-prone areas. However, the effects of climatic stress and drought on growth and defoliation could also depend on tree age. To address these issues, we compared growth and defoliation data with recent climate variability and drought severity in Abies pinsapo old and young trees sampled in Southern Spain, where a systematic health network (Andalucía Permanent Plot Network) was established. Our aims were: (i) to assess the growth sensitivity of old and young A. pinsapo trees and (ii) to test if relative changes in radial growth were related with recent defoliation, for instance, after severe droughts. We also computed the resilience indices to quantify how old and young trees recovered growth after recent droughts. Wet-cool conditions during the prior autumn and the current early summer improved the growth of old trees, whereas late-spring wet conditions enhanced the growth of young trees. Old trees were more sensitive to wet and sunny conditions in the early summer than young trees. Old and young trees were more responsive to the Standardized Precipitation-Evapotranspiration Index drought index of June–July and July–August calculated at short (one–three months) and mid (three–six months) time scales, respectively. Old trees presented a higher resistance to a severe drought in 1995 than young trees. A positive association was found between stand defoliation and relative growth. Combining monitoring and tree ring networks is useful for the detection of early warning signals of dieback in similar drought-prone forests.


2007 ◽  
Vol 21 (13) ◽  
pp. 1678-1691 ◽  
Author(s):  
Timothy M. Shanahan ◽  
Jonathan T. Overpeck ◽  
W. E. Sharp ◽  
Christopher A. Scholz ◽  
Justice A. Arko

2002 ◽  
Vol 68 (sup1) ◽  
pp. 226-229 ◽  
Author(s):  
Yasunori SAKURAI ◽  
Hidetada KIYOFUJI ◽  
Sei-ichi SAITOH ◽  
Jun YAMAMOTO ◽  
Tsuneo GOTO ◽  
...  

ARCTIC ◽  
2018 ◽  
Vol 71 (2) ◽  
Author(s):  
Emily M. Stewart ◽  
Kathryn E. Hargan ◽  
Branaavan Sivarajah ◽  
Linda E. Kimpe ◽  
Jules M. Blais ◽  
...  

Niven Lake was the first wastewater disposal site for the City of Yellowknife (Northwest Territories, Canada), receiving domestic sewage for more than 30 years. Here, we used a high-resolution sediment core to track past sewage inputs to Niven Lake by comparing changes in sedimentary sterols and three diagnostic ratios for human fecal contamination, as well as biological assemblages and overall lake production, with the known history of sewage inputs to the lake from 1948 to 1981. Coprostanol, often considered the best indicator of human fecal contamination, increased by ~8% between depths of 7.5 cm and 5 cm (~1950 to 1981) and was more reliable in tracking sewage contamination than diagnostic sterol ratios. Muted responses in subfossil diatom and chironomid assemblages were noted during the time of sewage inputs, and similar responses have been reported in other eutrophic Arctic sites, as well as in many macrophyte-dominated shallow lakes in general. More marked shifts in diatoms and chironomids occurred a decade after the end of sewage inputs, in the 1990s, a time that closely aligned with the warmest years on record for Yellowknife. This post–sewage era response was indicative of anoxia and possibly of positive feedback from internal phosphorus loading. The response may have been facilitated by recent climate warming, resulting in a lagging recovery from eutrophication. Changes in the diatoms and chironomids of Niven Lake were also indicative of metal pollution, suggesting that the lake has experienced the compounding effects of arsenic contamination from nearby gold mining.


Sign in / Sign up

Export Citation Format

Share Document