Myoclonic Seizures Occurred during the Brain Tumor Resection in a Patient of the Recurred Malignant Meningioma of Cerebral Frontal Lobe - A case report -

2007 ◽  
Vol 52 (2) ◽  
pp. 241
Author(s):  
Yun Hong Kim ◽  
Young Jae Yi ◽  
Moon Ki Kyoung ◽  
Hyun Soo Kim ◽  
Sung Ha Mun ◽  
...  
2021 ◽  
Vol 163 (5) ◽  
pp. 1257-1267 ◽  
Author(s):  
Anne-Laure Lemaitre ◽  
Guillaume Herbet ◽  
Hugues Duffau ◽  
Gilles Lafargue

Author(s):  
Hamed Azarnoush ◽  
Gmaan Alzhrani ◽  
Alexander Winkler-Schwartz ◽  
Fahad Alotaibi ◽  
Nicholas Gelinas-Phaneuf ◽  
...  

Author(s):  
Shaun E. Gruenbaum ◽  
Christian S. Guay ◽  
Benjamin F. Gruenbaum ◽  
Aidos Konkayev ◽  
Andrea Falegnami ◽  
...  

2021 ◽  
Author(s):  
Xiu-Heng Zhang ◽  
Heng Zhang ◽  
Zhen Li ◽  
Gui-Bin Bian

Abstract Three-dimensional force perception is critically important in the enhancement of human force perception to minimize brain injuries resulting from excessive forces applied by surgical instruments in robot-assisted brain tumor resection. And surgeons are not responsive enough to interpret tool-tissue interaction forces. In previous studies, various force measurement techniques have been published. In neurosurgical scenarios, there are still some drawbacks to these presented approaches to forces perception. Because of the narrow, and slim configuration of bipolar forceps, three-dimensional contact forces on forceps tips is not easy to be traced in real-time. Five fundamental acts of handling bipolar forceps are poking, opposing, pressing, opening, and closing. The first three acts independently correspond to the axial force of z, x, y. So, in this paper, typical interactions between bipolar forceps and brain tissues have been analyzed. A three-dimensional force perception technique to collect force data on bipolar forceps tips by installing three Fiber Bragg Grating Sensors (FBGs) on each prong of bipolar forceps in real-time is proposed. Experiments using a tele-neurosurgical robot were performed on an in-vitro pig brain. In the experiments, three-dimensional forces were tracked in real-time. It is possible to experience forces at a minimum of 0.01 N. The three-dimensional force perception range is 0-4 N. The calibrating resolution on x, y, and z, is 0.01, 0.03, 0.1 N, separately. According to our observation, the measurement accuracy precision is over 95%.


2016 ◽  
Vol 18 (suppl 3) ◽  
pp. iii129.2-iii129
Author(s):  
Salinas Sanz Jose Antonio ◽  
Brell Doval Marta ◽  
Ibañez Dominguez Javier ◽  
Guibelalde del Castillo Mercedes ◽  
Rocabado Quintana Sergio Alejandro ◽  
...  

2016 ◽  
Vol 17 (4) ◽  
pp. 434-438 ◽  
Author(s):  
Ritchell van Dams ◽  
Henry S. Park ◽  
Ahmed K. Alomari ◽  
Adele S. Ricciardi ◽  
Harini Rao ◽  
...  

This case report demonstrates that hypofractionated partial-brain radiation therapy with limited margins is a reasonable approach following gross tumor resection of Ewing sarcoma metastases to the brain. The patient presented with 2 intracranial metastases treated with gross-total resection followed by radiation therapy to 30 Gy in 5 fractions. The patient experienced symptomatic treatment-related inflammatory changes with resolution after receiving dexamethasone. He remains alive at 21 months of follow-up with no evidence of disease.


Sign in / Sign up

Export Citation Format

Share Document