scholarly journals Virulence and pathogenicity of three Trypanosoma brucei rhodesiense stabilates in a Swiss white mouse model

Author(s):  
Christopher Kariuki ◽  
John M. Kagira ◽  
Victor Mwadime ◽  
Maina Ngotho

Background: A key objective in basic research on human African trypanosomiasis (HAT) is developing a cheap and reliable experimental model of the disease for use in pathogenesis and drug studies.Objective: With a view to improving current models, a study was undertaken to characterise the virulence and pathogenicity of three Trypanosoma brucei rhodesiense stabilates, labelled as International Livestock Research Institute (ILRI)-2918, ILRI-3953, and Institute of Primate Research (IPR)-001, infected into Swiss white mice.Methods: Swiss white mice were infected intraperitoneally with trypanosomes and observedfor parasitaemia using wet blood smears obtained by tail snipping. Induction of late-stagedisease was undertaken using diminazene aceturate (40 mg/kg, Berenil) with curativetreatment done using melarsoprol (3.6 mg/kg, Arsobal).Results: The prepatent period for the stabilates ranged from three to four days with mean peak parasitaemia ranging from Log10 6.40 to 8.36. First peak parasitaemia for all stabilates varied between six and seven days post infection (DPI) followed by secondary latency in ILRI-2918 (15–17 DPI) and IPR-001 (17–19 DPI). Survival times ranged from six DPI (ILRI-3953) to 86 DPI (IPR-001). Hindleg paresis was observed in both ILRI-3953 (at peak parasitaemia) and ILRI-2918 (after relapse parasitaemia). Mice infected with IPR-001 survived until 54 DPI when curative treatment was undertaken.Conclusions: This study demonstrated that the stabilates ILRI-2918 and ILRI-3953 were unsuitable for modelling late-stage HAT in mice. The stabilate IPR-001 demonstrated the potential to induce chronic trypanosomiasis in Swiss white mice for use in development of a late-stage model of HAT.

2008 ◽  
Vol 53 (3) ◽  
pp. 953-957 ◽  
Author(s):  
R. E. Mdachi ◽  
J. K. Thuita ◽  
J. M. Kagira ◽  
J. M. Ngotho ◽  
G. A. Murilla ◽  
...  

ABSTRACT Owing to the lack of oral drugs for human African trypanosomiasis, patients have to be hospitalized for 10 to 30 days to facilitate treatment with parenterally administered medicines. The efficacy of a novel orally administered prodrug, 2,5-bis(4-amidinophenyl)-furan-bis-O-methlylamidoxime (pafuramidine, DB289), was tested in the vervet monkey (Chlorocebus [Cercopithecus] aethiops) model of sleeping sickness. Five groups of three animals each were infected intravenously with 104 Trypanosoma brucei rhodesiense KETRI 2537 cells. On the seventh day postinfection (p.i.) in an early-stage infection, animals in groups 1, 2, and 3 were treated orally with pafuramidine at dose rates of 1, 3, or 10 mg/kg of body weight, respectively, for five consecutive days. The animals in groups 4 and 5 were treated with 10 mg/kg for 10 consecutive days starting on the 14th day p.i. (group 4) or on the 28th day p.i. (group 5), when these animals were in the late stage of the disease. In the groups treated in the early stage, 10 mg/kg of pafuramidine completely cured all three monkeys, whereas lower doses of 3 mg/kg and 1 mg/kg cured only one of three and zero of three monkeys, respectively. Treatment of late-stage infections resulted in cure rates of one of three (group 4) and zero of three (group 5) monkeys. These studies demonstrated that pafuramidine was orally active in monkeys with early-stage T. brucei rhodesiense infections at dose rates above 3 mg/kg for 5 days. It was also evident that the drug attained only minimal efficacy against late-stage infections, indicating the limited ability of the molecule to cross the blood-brain barrier. This study has shown that oral diamidines have potential for the treatment of early-stage sleeping sickness.


2020 ◽  
Author(s):  
Kariuki Ndung’u ◽  
Grace Adira Murilla ◽  
John Kibuthu Thuita ◽  
Geoffrey Njuguna Ngae ◽  
Joanna Eseri Auma ◽  
...  

AbstractWe assessed the virulence and anti-trypanosomal drug sensitivity patterns of Trypanosoma brucei rhodesiense (Tbr) isolates in the Kenya Agricultural and Livestock Research Organization-Biotechnology Research Institute (KALRO-BioRI) cryobank. Specifically, the study focused on Tbr clones originally isolated from the western Kenya/eastern Uganda focus of human African Trypanosomiasis (HAT). Twelve (12) Tbr clones were assessed for virulence using groups(n=10) of Swiss White Mice monitored for 60 days post infection (dpi). Based on survival time, four classes of virulence were identified: (a) very-acute: 0-15, (b) acute: 16-30, (c) sub-acute: 31-45 and (d) chronic: 46-60 dpi. Other virulence biomarkers identified included: prepatent period (pp), parasitaemia progression, packed cell volume (PCV) and body weight changes. The test Tbr clones together with KALRO-BioRi reference drug-resistant and drug sensitive isolates were then tested for sensitivity to melarsoprol (mel B) pentamidine, diminazene aceturate and suramin, using mice groups (n= 5) treated with single doses of each drug at 24 hours post infection. Our results showed that the clones were distributed among four classes of virulence as follows: 3/12 (very-acute), 3/12 (acute), 2/12 (sub-acute) and 4/12 (chronic) isolates. Differences in survivorship, parasitaemia progression and PCV were significant (P<0.001) and correlated. The isolate considered to be drug resistant at KALRO-BioRI, KETRI 2538, was confirmed to be resistant to melarsoprol, pentamidine and diminazene aceturate but it was not resistant to suramin. At least 80% cure rates of all the test isolates was achieved with melarsoprol (1mg/Kg and 20 mg/kg), pentamidine (5 and 20 mg/kg), diminazene aceturate (5 mg/kg) and suramin (5 mg/kg) indicating that the isolates were not resistant to any of the drugs despite the differences in virulence. This study provides evidence of variations in virulence of Tbr isolates from a single HAT focus and confirms that these variations are not a significant determinant of isolate sensitivity to anti-trypanosomal drugs.


2007 ◽  
Vol 74 (1) ◽  
Author(s):  
N. Maina ◽  
J.M. Kagira

The occurrence of cross-resistance among melarsoprol-resistant Trypanosoma brucei rhodesiense isolates was investigated in this study. The isolates, T. b. rhodesiense KETRI 237, 2538, 1992, 2709, 2694 and 3530, had been obtained from sleeping sickness patients in Kenya and Uganda between 1960 and 1985. Five groups consisting of six mice each were inoculated intraperitoneally with 105 parasites of each isolate, and 24 h later treated with either melarsoprol, homidium chloride, diminazene aceturate or isometamidium chloride. The control group comprised infected but untreated mice. The mice were monitored for cure for a period of 60 days post-treatment. The mean prepatent period in the control mice was 5 days while the mean survival period was 22 days. Five of the stabilates, KETRI 237, 2538, 2709, 2694, and 3530, were confirmed to be melarsoprol resistant. Cross-resistance was observed, with the majority of the isolates being resistant to homidium chloride (5/6) and diminazene aceturate (5/6), but all were sensitive to isometamidium chloride (6/6). However T. b. rhodesiense KETRI 1992, which was previously considered as melarsoprol resistant, was sensitive to all the drugs tested. In conclusion, our study has revealed the existence of cross-resistance among the melarsoprol resistant isolates which could only be cured by isometamidium.


2015 ◽  
Vol 9 (6) ◽  
pp. e0003835 ◽  
Author(s):  
Charles D. Kato ◽  
Vincent P. Alibu ◽  
Ann Nanteza ◽  
Claire M. Mugasa ◽  
Enock Matovu

1998 ◽  
Vol 42 (10) ◽  
pp. 2718-2721 ◽  
Author(s):  
Cyrus J. Bacchi ◽  
Marcus Vargas ◽  
Donna Rattendi ◽  
Burt Goldberg ◽  
Weicheng Zhou

ABSTRACT A recently developed diaminotriazine derivative [O,O′-bis(1,2-dihydro-2,2-tetramethylene-4,6-diamino-S-triazin-1-yl)-1,6-hexanediol dihydrochloride; T-46; SIPI 1029] was examined for activity against African trypanosomes in in vitro and in vivo model systems. In vitro, SIPI 1029 was 50% inhibitory for growth of bloodstream trypomastigotes of four strains of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense at 0.15 to 2.15 nM (50% inhibitory concentrations). In in vivo mouse laboratory models of T. b. rhodesiense clinical isolate infections, SIPI 1029 was curative for 12 of 13 isolates at ≤10 mg/kg of body weight/day for 3 days. In eight infections, a single dose was ≥60% curative, and in six of these, a dose of ≤5 mg/kg was sufficient for ≥60% cure rates. A number of these isolates were resistant to the standard trypanocide melarsoprol (Arsobal) and/or the diamidines diminazene aceturate (Berenil) and pentamidine. SIPI 1029 was also curative in combination withdl-α-difluoromethylornithine (Ornidyl) in a T. b. brucei central nervous system model infection. Some evidence of toxicity was found in dosage regimens of 10 mg/kg/day for 2 or 3 days in which deaths were observed in 6 of 65 animals given this dosage regimen. The activity of SIPI 1029 in this study indicates that this class of compounds (diaminotriazines) should be explored as leads for new human and veterinary trypanocides.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0229060
Author(s):  
Kariuki Ndung’u ◽  
Grace Adira Murilla ◽  
John Kibuthu Thuita ◽  
Geoffrey Njuguna Ngae ◽  
Joanna Eseri Auma ◽  
...  

We assessed the virulence and anti-trypanosomal drug sensitivity patterns of Trypanosoma brucei rhodesiense (Tbr) isolates in the Kenya Agricultural and Livestock Research Organization-Biotechnology Research Institute (KALRO-BioRI) cryobank. Specifically, the study focused on Tbr clones originally isolated from the western Kenya/eastern Uganda focus of human African Trypanosomiasis (HAT). Twelve (12) Tbr clones were assessed for virulence using groups(n = 10) of Swiss White Mice monitored for 60 days post infection (dpi). Based on survival time, four classes of virulence were identified: (a) very-acute: 0–15, (b) acute: 16–30, (c) sub-acute: 31–45 and (d) chronic: 46–60 dpi. Other virulence biomarkers identified included: pre-patent period (pp), parasitaemia progression, packed cell volume (PCV) and body weight changes. The test Tbr clones together with KALRO-BioRi reference drug-resistant and drug sensitive isolates were then tested for sensitivity to melarsoprol (mel B), pentamidine, diminazene aceturate and suramin, using mice groups (n = 5) treated with single doses of each drug at 24 hours post infection. Our results showed that the clones were distributed among four classes of virulence as follows: 3/12 (very-acute), 3/12 (acute), 2/12 (sub-acute) and 4/12 (chronic) isolates. Differences in survivorship, parasitaemia progression and PCV were significant (P<0.001) and correlated. The isolate considered to be drug resistant at KALRO-BioRI, KETRI 2538, was confirmed to be resistant to melarsoprol, pentamidine and diminazene aceturate but it was not resistant to suramin. A cure rate of at least 80% was achieved for all test isolates with melarsoprol (1mg/Kg and 20 mg/kg), pentamidine (5 and 20 mg/kg), diminazene aceturate (5 mg/kg) and suramin (5 mg/kg) indicating that the isolates were not resistant to any of the drugs despite the differences in virulence. This study provides evidence of variations in virulence of Tbr clones from a single HAT focus and confirms that this variations is not a significant determinant of isolate sensitivity to anti-trypanosomal drugs.


2020 ◽  
Author(s):  
Kariuki Ndung'u ◽  
Grace Adira Murilla ◽  
John Kibuthu Thuita ◽  
John Maina Kagira ◽  
Paul O. Mireji ◽  
...  

Abstract Background: Phenotypic and morphological characteristics distinguishing from bloodstream form (BSF) and central nervous system (CNS) of Trypanosoma brucei rhodesiense (Tbr) are poorly understood. Method: To identify these distinguishing characteristics, we separately infected four donor mice with each of five Tbr isolates (KETRI 2537/3537/2656/3459 and EATRO 2291). At 21 days post infection (DPI), donor mice were euthanized, BSF or CNS derived trypanosomes recovered and used for the following studies: 1) determination of morphological characteristics 2) pathogenicity studies using groups of 10 mice per isolate form. We then assessed differences in their lengths and morphology) and other characteristics including pre-patent period (PP), parasitaemia progression, packed cell volume (PCV), body weight, survival times, gross pathology, and histopathology. All analyses of data were conducted using GenStat, UK where p ⩽ 0.05 were considered statistically significant. Differences between and within the means were analyzed using one-way ANOVA. General Linear Model was used to analyze data on the length of the trypanosome. Survival data analysis was carried out employing the Kaplan–Meier method. Results: Morphologically, the CNS forms were predominantly long slender (LS) while BSF forms consisted of a mixture of short stumpy and intermediate forms. The mean length of CNS trypanosomes was 0.6 micrometer longer than their counterpart BSF derived trypanosomes. The PP was significantly (p<0.05) shorter and progression to peak parasitaemia faster (7 vs 9 days) in CNS than BSF derived trypanosomes. PCV declined by 21.6% and 26.9% in BSF and CNS infected mice respectively whereas non-infected control increased by 3.8% at 14 DPI. Body weight changes in BSF and CNS infected mice were (12.7% and 9.2% respectively) and significantly (p <0.05) lower than in non-infected control (27.6%) at 14 DPI. Gross pathology changes (splenomegaly and hepatomegaly) and histopathology changes were pronounced in mice infected with CNS relative to BSF trypanosome forms. Changes in histopathology included congestion, infiltration with inflammatory cells, hemolysis and necrosis, all indicators of differential virulence of the forms. Conclusion: Our study identified higher pathogenicity in CNS relative to BFS derived trypanosome forms in the mouse model. We also identified KETRI 2656 as a suitable isolate for acute menigo- encephalitic studies.


Author(s):  
L. Schmidt ◽  
O. Sehic ◽  
C. Wild

Abstract Background We considered the extent of the contribution of publicly funded research to the late-stage clinical development of pharmaceuticals and medicinal products, based on the European Commission (EC) FP7 research funding programme. Using two EC FP7-HEALTH case study examples—representing two types of outcomes—we then estimated wider public and charitable research funding contributions. Methods Using the publicly available database of FP7-HEALTH funded projects, we identified awards relating to late-stage clinical development according to the systematic application of inclusion and exclusion criteria, classified them according to product type and clinical indication, and calculated total EC funding amounts. We then identified two case studies representing extreme outcomes: failure to proceed with the product (hepatitis C vaccine) and successful market authorisation (Orfadin® for alkaptonuria). Total public and philanthropic research funding contributions to these products were then estimated using publicly available information on funding. Results 12.3% (120/977) of all EC FP7-HEALTH awards related to the funding of late-stage clinical research, totalling € 686,871,399. Pharmaceutical products and vaccines together accounted for 84% of these late-stage clinical development research awards and 70% of its funding. The hepatitis C vaccine received total European Community (FP7 and its predecessor, EC Framework VI) funding of €13,183,813; total public and charitable research funding for this product development was estimated at € 77,060,102. The industry sponsor does not consider further development of this product viable; this now represents public risk investment. FP7 funding for the late-stage development of Orfadin® for alkaptonuria was so important that the trials it funded formed the basis for market authorisation, but it is not clear whether the price of the treatment (over €20,000 per patient per year) adequately reflects the substantial public funding contribution. Conclusions Public and charitable research funding plays an essential role, not just in early stage basic research, but also in the late-stage clinical development of products prior to market authorisation. In addition, it provides risk capital for failed products. Within this context, we consider further discussions about a public return on investment and its reflection in pricing policies and decisions justified.


Sign in / Sign up

Export Citation Format

Share Document