scholarly journals A case report of acampomelic campomelic dysplasia and operative difficulties in cleft palate reconstruction

2016 ◽  
Vol 49 (02) ◽  
pp. 253-257 ◽  
Author(s):  
M. Pasupathy ◽  
Vasant Radhakrishnan ◽  
Hirji Sorab Adenwalla ◽  
Puthucode V. Narayanan

ABSTRACTAcampomelic campomelic dysplasia (CD) is a type of CD (CD; OMIM #114290), a rare form of congenital short-limbed dwarfism and is due to mutations in SOX9 gene family. Characteristic phenotypes of CD include bowing of the lower limbs, a narrow thoracic cage, 11 pairs of ribs, hypoplastic scapulae, macrocephaly, flattened supraorbital ridges and nasal bridge, cleft palate and micrognathia. The bending of the long bones is not an obligatory feature and is absent in about 10% of cases, referred to as acampomelic CD. A child previously diagnosed with acampomelic CD was brought to our outpatient clinic for cleft palate reconstruction. Our neurosurgeon cautioned us against performing surgery with extension of the neck in view of the possibility of producing quadriparesis, due to narrowing of the spinal canal as part of the osseous anomaly noted in the magnetic resonance imaging study of the spine, thus making the anaesthesia, surgical and post-operative procedures difficult. The cleft palate reconstruction was performed with all precautions and was uneventful.

1991 ◽  
Vol 65 (05) ◽  
pp. 549-552 ◽  
Author(s):  
A Blinc ◽  
G Planinšič ◽  
D Keber ◽  
O Jarh ◽  
G Lahajnar ◽  
...  

SummaryMagnetic resonance imaging was employed to study the dependence of clot lysing patterns on two different modes of transport of urokinase into whole blood clots. In one group of clots (nonperfused clots, n1 = 10), access of urokinase to the fibrin network was possible by diffusion only, whereas in the other group (perfused clots, n2 = 10) bulk flow of plasma containing urokinase was instituted through occlusive clots by a pressure difference of 3 .7 kPa (37 cm H2O) across 3 cm long clots with a diameter of 4 mm. It was determined separately that this pressure difference resulted in a volume flow rate of 5.05 ± 2.4 × 10−2 ml/min through occlusive clots. Perfused clots diminished in size significantly in comparison to nonperfused ones already after 20 min (p <0.005). Linear regression analysis of two-dimensional clot sizes measured by MRI showed that the rate of lysis was more than 50-times faster in the perfused group in comparison to the nonperfused group. It was concluded that penetration of the thrombolytic agent into clots by perfusion is much more effective than by diffusion. Our results might have some implications for understanding the differences in lysis of arterial and venous thrombi.


Sign in / Sign up

Export Citation Format

Share Document