scholarly journals Electroacupuncture in the repair of spinal cord injury: inhibiting the Notch signaling pathway and promoting neural stem cell proliferation

2015 ◽  
Vol 10 (3) ◽  
pp. 394 ◽  
Author(s):  
Hua-lin Yu ◽  
Xin Geng ◽  
Tao Sun ◽  
Jing-hui Li ◽  
Ning Zhao ◽  
...  
2019 ◽  
Author(s):  
Zhou Zhilai ◽  
Tian Xiaobo ◽  
Mo Biling ◽  
Xu Huali ◽  
Yao Shun ◽  
...  

Abstract Background The therapeutic effects of adipose-derived mesenchymal stem cell (ADSC) transplantation have been demonstrated in several models of central nervous system (CNS) injury and are thought to involve the modulation of the inflammatory response. However, the exact underlying molecular mechanism is poorly understood. Activation of the Jagged1/Notch signaling pathway is thought to involve inflammatory and gliotic events in the CNS. Here, we elucidated the effect of ADSC transplantation on the inflammatory reaction after spinal cord injury (SCI) and the potential mechanism mediated by Jagged1/Notch signaling pathway suppression.Methods Using a mouse model of compression SCI, ADSCs and Jagged1 small interfering RNA (siRNA) were injected into the spinal cord. Locomotor function, spinal cord tissue morphology and the levels of various proteins and transcripts were compared between groups.Results ADSC treatment resulted in significant downregulation of proinflammatory mediator expression and reduced ionized calcium binding adapter molecule 1 (Iba1) and ED1 staining in the injured spinal cord, promoting the survival of neurons. These changes were accompanied by improved functional recovery. The augmentation of the Jagged1/Notch signaling pathway after SCI was suppressed by ADSC transplantation. The inhibition of the Jagged1/Notch signaling pathway by Jagged1 siRNA resulted in a decrease in SCI-induced proinflammatory cytokines as well as the activation of microglia. Furthermore, Jagged1 knockdown suppressed the phosphorylation of JAK/STAT3 following SCI.Conclusion The results of this study demonstrated that the therapeutic effects of ADSCs in SCI mice were partly due to Jagged1/notch signaling pathway inhibition and a subsequent reduction in JAK/STAT3 phosphorylation.


2019 ◽  
Vol 223 ◽  
pp. 100-107 ◽  
Author(s):  
Songou Zhang ◽  
Benson O.A. Botchway ◽  
Yong Zhang ◽  
Xuehong Liu

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Xing Li ◽  
Dan Luo ◽  
Yu Hou ◽  
Yonghui Hou ◽  
Shudong Chen ◽  
...  

Spinal cord microcirculation involves functioning endothelial cells at the blood spinal cord barrier (BSCB) and maintains normal functioning of spinal cord neurons, axons, and glial cells. Protection of both the function and integrity of endothelial cells as well as the prevention of BSCB disruption may be a strong strategy for the treatment of spinal cord injury (SCI) cases. Sodium Tanshinone IIA silate (STS) is used for the treatment of coronary heart disease and improves microcirculation. Whether STS exhibits protective effects for SCI microcirculation is not yet clear. The purpose of this study is to investigate the protective effects of STS on oxygen-glucose deprivation- (OGD-) induced injury of spinal cord endothelial cells (SCMECs) in vitro and to explore effects on BSCB and neurovascular protection in vivo. SCMECs were treated with various concentrations of STS (1 μM, 3 μM, and 10 μM) for 24 h with or without OGD-induction. Cell viability, tube formation, migration, and expression of Notch signaling pathway components were evaluated. Histopathological evaluation (H&E), Nissl staining, BSCB permeability, and the expression levels of von Willebrand Factor (vWF), CD31, NeuN, and Notch signaling pathway components were analyzed. STS was found to improve SCMEC functions and reduce inflammatory mediators after OGD. STS also relieved histopathological damage, increased zonula occludens-1 (ZO-1), inhibited BSCB permeability, rescued microvessels, protected motor neuromas, and improved functional recovery in a SCI model. Moreover, we uncovered that the Notch signaling pathway plays an important role during these processes. These results indicated that STS protects microcirculation in SCI, which may be used as a therapeutic strategy for SCI in the future.


2020 ◽  
Author(s):  
Xu Yan ◽  
Yong Cao ◽  
Chunyuan Chen ◽  
Hui Xie ◽  
Hongbin Lu ◽  
...  

Abstract Background: Spinal cord injury (SCI) is a devastating clinical diseasewithout effectivetherapeuticapproach recently. In this study, we aim to investigate the effect of locally injection with exosome derived human urine stem cell (USC) embedding with hydrogelcould improve the spinal cord functional recovery after injury and the underlying mechanism.Methods:Exosome were isolate from USC andidentified by transmission electron microscopy and western blot. Functional assays using human umbilical vein endothelial cell (HUVEC) in vitro were performed to assess the effects of USC-Exosdeliverythe angiopoietin-like protein 3 (ANGPTL3) on tube formation and migration as well as their regulatory role in the PI3K/AKT signaling pathway activation. In vivo experiment we locally injection with exosome derived USC embedding with hydrogel for treatment of SCI. The effects of USC-Exos on functional recovery in spinal cord injury mice were tested by measuring motor evoked potential, histological and neovascular numbers. Meanwhile, the role of the candidate protein ANGPTL3 in USC-Exo for promoting angiogenesisin SCI was assessed.Results:In current study, we demonstrate that when given locallyinjection with exosomederivedhuman urine stem cell (USC) embeddingwith hydrogelcould pass the spinal cord blood brain barrier and delivery the angiopoietin-like protein 3 (ANGPTL3) to the injured spinal cord region. In addition, the administration of exosome derived from human USC could enhance spinal cord neurological functional recovery by promoting angiogenesis.The mechanism studies revealed that ANGPTL3 are enriched in USCexosome(USC-Exo) and required for USC exosome promoting angiogenesis. Functional studies further confirmed the effects caused by exosome derived from USC on angiogenesis wasmediated by PI3K/AKT signaling pathway. Conclusion:Collectively, our results indicated that USC derived exosome serve as a critical regulator of angiogenesis by transferring ANGPTL3 and may represent a promising novel therapeutic agent for SCI repair.


Sign in / Sign up

Export Citation Format

Share Document