scholarly journals Three-dimensional printed patient-specific implants – The future work horse

2020 ◽  
Vol 152 (7) ◽  
pp. 16
Author(s):  
Vikas Gunishetty ◽  
PadmarajJ Hegde
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Erfan Rezvani Ghomi ◽  
Saeideh Kholghi Eshkalak ◽  
Sunpreet Singh ◽  
Amutha Chinnappan ◽  
Seeram Ramakrishna ◽  
...  

Purpose The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing of patient-specific implants and developing anatomical models. Although a wide range of thermoplastic polymers are available as 3DP feedstock, yet obtaining biocompatible and structurally integrated biomedical devices is still challenging owing to various technical issues. Design/methodology/approach Polyether ether ketone (PEEK) is an organic and biocompatible compound material that is recently being used to fabricate complex design geometries and patient-specific implants through 3DP. However, the thermal and rheological features of PEEK make it difficult to process through the 3DP technologies, for instance, fused filament fabrication. The present review paper presents a state-of-the-art literature review of the 3DP of PEEK for potential biomedical applications. In particular, a special emphasis has been given on the existing technical hurdles and possible technological and processing solutions for improving the printability of PEEK. Findings The reviewed literature highlighted that there exist numerous scientific and technical means which can be adopted for improving the quality features of the 3D-printed PEEK-based biomedical structures. The discussed technological innovations will help the 3DP system to enhance the layer adhesion strength, structural stability, as well as enable the printing of high-performance thermoplastics. Originality/value The content of the present manuscript will motivate young scholars and senior scientists to work in exploring high-performance thermoplastics for 3DP applications.


Author(s):  
Lakshya P. Rathore ◽  
Naina Verma

Additive manufacturing (AM) is a novel technique that despite having been around for more than 35 years, has been underutilized. Its great advantage lies in the basic fact that it is incredibly customizable. Since its use was recognized in various fields of medicine like orthopaedics, otorhinolaryngology, ophthalmology etc, it has proved to be one of the most promising developments in most of them. Customizable orthotics, prosthetics and patient specific implants and tracheal splints are few of its advantages. And in the future too, the combination of tissue engineering with AM is believed to produce an immense change in biological tissue replacement.


2020 ◽  
Vol 9 (3) ◽  
pp. 832 ◽  
Author(s):  
Dave Chamo ◽  
Bilal Msallem ◽  
Neha Sharma ◽  
Soheila Aghlmandi ◽  
Christoph Kunz ◽  
...  

The use of patient-specific implants (PSIs) in craniofacial surgery is often limited due to a lack of expertise and/or production costs. Therefore, a simple and cost-efficient template-based fabrication workflow has been developed to overcome these disadvantages. The aim of this study is to assess the accuracy of PSIs made from their original templates. For a representative cranial defect (CRD) and a temporo-orbital defect (TOD), ten PSIs were made from polymethylmethacrylate (PMMA) using computer-aided design (CAD) and three-dimensional (3D) printing technology. These customized implants were measured and compared with their original 3D printed templates. The implants for the CRD revealed a root mean square (RMS) value ranging from 1.128 to 0.469 mm with a median RMS (Q1 to Q3) of 0.574 (0.528 to 0.701) mm. Those for the TOD revealed an RMS value ranging from 1.079 to 0.630 mm with a median RMS (Q1 to Q3) of 0.843 (0.635 to 0.943) mm. This study demonstrates that a highly precise duplication of PSIs can be achieved using this template-molding workflow. Thus, virtually planned implants can be accurately transferred into haptic PSIs. This workflow appears to offer a sophisticated solution for craniofacial reconstruction and continues to prove itself in daily clinical practice.


2021 ◽  
Author(s):  
Yiu Yan LEUNG ◽  
Jasper Ka Chai LEUNG ◽  
Alvin Tsz Choi LI ◽  
Nathan En Zuo TEO ◽  
Karen Pui Yan LEUNG ◽  
...  

Abstract The design and fabrication of three-dimensional (3D) -printed patient-specific implants (PSIs) for orthognathic surgery are customarily outsourced to commercial companies. We propose a protocol of designing PSIs and surgical guides by orthognathic surgeons-in-charge instead for wafer-less Le Fort I osteotomy. The aim of this prospective study was to evaluate the accuracy and post-operative complications of PSIs that are designed in-house for Le Fort I osteotomy. The post-operative cone beam computer tomography (CBCT) model of the maxilla was superimposed to the virtual surgical planning to compare the discrepancies of pre-determined landmarks, lines and principal axes between the two models. Twenty-five patients (12 males, 13 females) were included. The median linear deviations of the post-operative maxilla of the x, y and z axes were 0.74 mm, 0.75 mm and 0.72 mm, respectively. The deviations in the principal axes for pitch, yaw and roll were 1.40°, 0.90° and 0.60°, respectively. There were no post-operative complications related to the PSIs in the follow-up period. The 3D-printed PSIs designed in-house for wafer-less Le Fort I osteotomy are accurate and safe. Its clinical outcomes and accuracy are comparable to commercial PSIs for orthognathic surgery.


Author(s):  
Daniel L. Cohen ◽  
Evan Malone ◽  
Hod Lipson ◽  
Lawrence J. Bonassar

A major challenge in orthopaedic tissue engineering is the generation of cell-seeded implants with structures that mimic native tissue, both in terms of anatomic geometries and intratissue cell distributions. By combining the strengths of injection molding tissue engineering with those of Solid Freeform Fabrication (SFF), three-dimensional pre-seeded implants were fabricated without custom-tooling, enabling efficient production of patient-specific implants. The incorporation of SFF technology also enables the fabrication of geometrically complex, multiple-material implants with spatially heterogeneous cell distributions that could not otherwise be produced. Using a custom-built robotic SFF platform and gel deposition tools, alginate hydrogel was used with calcium sulfate as a crosslinking agent to produce pre-seeded living implants of arbitrary geometries. The process was determined to be sterile and viable at 94±5%. The GAG production was found to be about half that of a similarly molded samples. The compressive elastic modulus was determined to be 1.462±0.113 kPa.


2021 ◽  
pp. 175319342110040
Author(s):  
Nazlı Tümer ◽  
Olivier Hiemstra ◽  
Yvonne Schreurs ◽  
Gerald A. Kraan ◽  
Johan van der Stok ◽  
...  

We studied the three-dimensional (3-D) shape variations and symmetry of the lunate to evaluate whether a contralateral shape-based approach to design patient-specific implants for treatment of Kienböck’s disease is accurate. A 3-D statistical shape model of the lunate was built using the computed tomography scans of 54 lunate pairs and shape symmetry was evaluated based on an intraclass correlation analysis. The lunate shape was not bilaterally symmetrical in (1) the angle scaphoid surface – radius-ulna surface, (2) the dorsal side and the length of the side adjacent to the triquetrum, (3) the orientation of the volar surface, (4) the width of the side adjacent to the scaphoid, (5) the skewness in the coronal plane and (6) the curvature of bone articulating with the hamate and capitate. These findings suggest that using the contralateral lunate to design patient-specific lunate implants may not be as accurate as it is intended.


Author(s):  
Emanuele Verghi ◽  
Vincenzo Catanese ◽  
Antonio Nenna ◽  
Nunzio Mastroianni ◽  
Mario Lusini ◽  
...  

Three-dimensional (3D) printing is emerging as an innovative tool for a tailored approach to endovascular or open procedures. The efforts of different specialists and data analysis can be used to fabricate patient-specific implants, which might have significant impact even in life-saving procedures such as aortic dissections or aortic arch aneurysm. 3D printing is gradually changing the traditional pattern of diagnosis and treatment. This innovative approach allows a perfect match between the patient's anatomy and the prosthetic graft, ideally resulting in better hemodynamics and improved long-term patency related to reduced turbulent flow. Future applications of 3D printing in the cardiovascular field combined with tissue engineering will enhance the therapeutic features of bioprinted tissues and scaffolds for regenerative medicine. This review will summarize the clinical significance of 3D printing in cardiovascular disease, exploring current applications, translational outlooks and future perspectives.


2014 ◽  
Vol 7 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Rajesh N. Maniar ◽  
Tushar Singhi

2020 ◽  
Vol 48 (7) ◽  
pp. 653-660
Author(s):  
Thomas Rückschloß ◽  
Oliver Ristow ◽  
Reinald Kühle ◽  
Frederic Weichel ◽  
Christoph Roser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document