scholarly journals Colorectal cancer detection based on deep learning

2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Aly Karsan ◽  
Lin Xu ◽  
Blair Walker ◽  
Peir-In Liang ◽  
Yi Tong ◽  
...  
2021 ◽  
Author(s):  
Birgid Schömig-Markiefka ◽  
Alexey Pryalukhin ◽  
Wolfgang Hulla ◽  
Andrey Bychkov ◽  
Junya Fukuoka ◽  
...  

AbstractDigital pathology provides a possibility for computational analysis of histological slides and automatization of routine pathological tasks. Histological slides are very heterogeneous concerning staining, sections’ thickness, and artifacts arising during tissue processing, cutting, staining, and digitization. In this study, we digitally reproduce major types of artifacts. Using six datasets from four different institutions digitized by different scanner systems, we systematically explore artifacts’ influence on the accuracy of the pre-trained, validated, deep learning-based model for prostate cancer detection in histological slides. We provide evidence that any histological artifact dependent on severity can lead to a substantial loss in model performance. Strategies for the prevention of diagnostic model accuracy losses in the context of artifacts are warranted. Stress-testing of diagnostic models using synthetically generated artifacts might be an essential step during clinical validation of deep learning-based algorithms.


2021 ◽  
Author(s):  
Janice Miller ◽  
Yasuko Maeda ◽  
Stephanie Au ◽  
Frances Gunn ◽  
Lorna Porteous ◽  
...  

2021 ◽  
Vol 179 ◽  
pp. 632-639
Author(s):  
Steven Amadeus ◽  
Tjeng Wawan Cenggoro ◽  
Arif Budiarto ◽  
Bens Pardamean

2021 ◽  
Vol 7 (3) ◽  
pp. 51
Author(s):  
Emanuela Paladini ◽  
Edoardo Vantaggiato ◽  
Fares Bougourzi ◽  
Cosimo Distante ◽  
Abdenour Hadid ◽  
...  

In recent years, automatic tissue phenotyping has attracted increasing interest in the Digital Pathology (DP) field. For Colorectal Cancer (CRC), tissue phenotyping can diagnose the cancer and differentiate between different cancer grades. The development of Whole Slide Images (WSIs) has provided the required data for creating automatic tissue phenotyping systems. In this paper, we study different hand-crafted feature-based and deep learning methods using two popular multi-classes CRC-tissue-type databases: Kather-CRC-2016 and CRC-TP. For the hand-crafted features, we use two texture descriptors (LPQ and BSIF) and their combination. In addition, two classifiers are used (SVM and NN) to classify the texture features into distinct CRC tissue types. For the deep learning methods, we evaluate four Convolutional Neural Network (CNN) architectures (ResNet-101, ResNeXt-50, Inception-v3, and DenseNet-161). Moreover, we propose two Ensemble CNN approaches: Mean-Ensemble-CNN and NN-Ensemble-CNN. The experimental results show that the proposed approaches outperformed the hand-crafted feature-based methods, CNN architectures and the state-of-the-art methods in both databases.


Author(s):  
N Kalaivani ◽  
N Manimaran ◽  
Dr. S Sophia ◽  
D D Devi

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 27085-27100
Author(s):  
Saqib Iqbal ◽  
Ghazanfar Farooq Siddiqui ◽  
Amjad Rehman ◽  
Lal Hussain ◽  
Tanzila Saba ◽  
...  

2021 ◽  
Vol 32 ◽  
pp. S290
Author(s):  
Daisuke Kotani ◽  
Satoshi Fujii ◽  
Tomoyuki Yamada ◽  
Mizuto Suzuki ◽  
Takayuki Yoshino

Sign in / Sign up

Export Citation Format

Share Document