High-performance liquid chromatography-fingerprint analyses, In vitro cytotoxicity, antimicrobial and antioxidant activities of the extracts of two cestrum species growing in Egypt

2018 ◽  
Vol 10 (2) ◽  
pp. 173 ◽  
Author(s):  
SamiM Nasr ◽  
MosadA Ghareeb ◽  
MonaA Mohamed ◽  
NehalM Elwan ◽  
Abd El-WanesAnter Abdel-Aziz ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ramya Vijayakumar ◽  
Siti Salwa Abd Gani ◽  
Uswatun Hasanah Zaidan ◽  
Mohd Izuan Effendi Halmi ◽  
Thiruventhan Karunakaran ◽  
...  

Currently, consumers’ demand for sunscreens derived from natural sources that provide photoprotection from ultraviolet (UV) radiation is pushing the cosmetic industry to develop breakthrough formulations of sun protection products by incorporating plant antioxidants as their active ingredients. In this context, the present study was initiated to evaluate the antioxidant and photoprotective properties of the underutilized Hylocereus polyrhizus peel extract (HPPE) using in vitro spectrophotometric techniques. The phytochemical screenings of HPPE conducted via high-performance liquid chromatography (HPLC) and ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) revealed the presence of phenolic acids and flavonoids as the major secondary metabolites in HPPE. The antioxidant potentials evaluated based on 2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical and total antioxidant capacity assays were in the range of 22.16 ± 0.24%–84.67 ± 0.03% with 50% inhibitory concentration (IC50) of 36.39 ± 0.04 μg/mL and 23.76 ± 0.14%–31.87 ± 0.26% (IC50 = 21.93 ± 0.07 μg/mL), respectively. For the photoprotective evaluation, the results showed that HPPE had significantly high absorbance values (3.1–3.6) at 290–320 nm with an exceptional sun protection factor (SPF) value of 35.02 ± 0.39 at 1.00 mg/mL. HPPE also possessed a broad-spectrum shielding power against both UVA and UVB radiations. Hence, in terms of practical implications, our findings would offer an exciting avenue to develop a photoprotective formulation incorporating the ethanolic extract of Hylocereus polyrhizus peels as a synergistic active ingredient for its excellent UV absorption properties and the strong antioxidant activities.


Author(s):  
Mariola Dreger ◽  
Katarzyna Seidler-Łożykowska ◽  
Milena Szalata ◽  
Artur Adamczak ◽  
Karolina Wielgus

AbstractThe purpose of the study was to evaluate Chamerion angustifolium (L.) Holub genotypes for preliminary selection and further breeding programs aimed at obtaining a suitable industrial form for the pharmaceutical applications. Clonally propagated plants representing 10 genotypes of Ch. angustifolium were regenerated under in vitro conditions, hardened and planted in the field. Studies included an evaluation of shoot proliferation, phytochemical assessment of in vitro and ex vitro plants as well as investigations of intraspecies variability regarding four phenological stages: vegetative, beginning of blooming, full blooming, and green fruit phases. Quantitative and qualitative analyses of bioactive compounds were performed using high-performance liquid chromatography coupled with diode array detector and tandem mass spectrometer (HPLC–DAD–MS/MS) and high-performance liquid chromatography (HPLC) methods. The efficiency of shoot multiplication varied between genotypes from 8.12 to 21.48 shoots per explant. A high reproduction rate (> 20 shoots per explant) was recorded for four lines (PL_45, PL_44, PL_58, DE_2). Plants grown in vitro synthesized oenothein B (11.2–22.3 mg g−1 DW) and caffeic acid derivatives. Plants harvested from field contained the full spectrum of polyphenols characteristic for this species, and oenothein B and quercetin 3-O-glucuronide were the most abundant. The maximal content of oenothein B was determined in the vegetative phase of fireweed, while some flavonoids were found in the highest amount in full blooming phase. The results of analysis of variance indicated significant differences among genotypes in oenothein B, 3-O-caffeoylquinic acid and flavonoids accumulation in four phenological phases. PL_44 plants were characterized by high content of oenothein B and quercetin 3-O-glucuronide as well as a relatively high level of other flavonoids. Based on our phytochemical and micropropagation studies, PL_44 genotype was the best candidate for early selection and further breeding programs.


2008 ◽  
Vol 54 (6) ◽  
pp. 501-508 ◽  
Author(s):  
Karina Cogo ◽  
Michelle Franz Montan ◽  
Cristiane de Cássia Bergamaschi ◽  
Eduardo D. Andrade ◽  
Pedro Luiz Rosalen ◽  
...  

The aim of this in vitro study was to evaluate the effects of nicotine, cotinine, and caffeine on the viability of some oral bacterial species. It also evaluated the ability of these bacteria to metabolize those substances. Single-species biofilms of Streptococcus gordonii , Porphyromonas gingivalis , or Fusobacterium nucleatum and dual-species biofilms of S. gordonii – F. nucleatum and F. nucleatum – P. gingivalis were grown on hydroxyapatite discs. Seven species were studied as planktonic cells, including Streptococcus oralis , Streptococcus mitis , Propionibacterium acnes , Actinomyces naeslundii , and the species mentioned above. The viability of planktonic cells and biofilms was analyzed by susceptibility tests and time-kill assays, respectively, against different concentrations of nicotine, cotinine, and caffeine. High-performance liquid chromatography was performed to quantify nicotine, cotinine, and caffeine concentrations in the culture media after the assays. Susceptibility tests and viability assays showed that nicotine, cotinine, and caffeine cannot reduce or stimulate bacterial growth. High-performance liquid chromatography results showed that nicotine, cotinine, and caffeine concentrations were not altered after bacteria exposure. These findings indicate that nicotine, cotinine, and caffeine, in the concentrations used, cannot affect significantly the growth of these oral bacterial strains. Moreover, these species do not seem to metabolize these substances.


Sign in / Sign up

Export Citation Format

Share Document