scholarly journals How Location-Aware Access Control Affects User Privacy and Security in Cloud Computing Systems

2020 ◽  
Vol 6 (18) ◽  
pp. 165236 ◽  
Author(s):  
Wen Zeng ◽  
Reem Bashir ◽  
Trevor Wood ◽  
Francois Siewe ◽  
Helge Janicke ◽  
...  
Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2664 ◽  
Author(s):  
Luis Belem Pacheco ◽  
Eduardo Pelinson Alchieri ◽  
Priscila Mendez Barreto

The use of Internet of Things (IoT) is rapidly growing and a huge amount of data is being generated by IoT devices. Cloud computing is a natural candidate to handle this data since it has enough power and capacity to process, store and control data access. Moreover, this approach brings several benefits to the IoT, such as the aggregation of all IoT data in a common place and the use of cloud services to consume this data and provide useful applications. However, enforcing user privacy when sending sensitive information to the cloud is a challenge. This work presents and evaluates an architecture to provide privacy in the integration of IoT and cloud computing. The proposed architecture, called PROTeCt—Privacy aRquitecture for integratiOn of internet of Things and Cloud computing, improves user privacy by implementing privacy enforcement at the IoT devices instead of at the gateway, as is usually done. Consequently, the proposed approach improves both system security and fault tolerance, since it removes the single point of failure (gateway). The proposed architecture is evaluated through an analytical analysis and simulations with severely constrained devices, where delay and energy consumption are evaluated and compared to other architectures. The obtained results show the practical feasibility of the proposed solutions and demonstrate that the overheads introduced in the IoT devices are worthwhile considering the increased level of privacy and security.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jiawei Zhang ◽  
Ning Lu ◽  
Teng Li ◽  
Jianfeng Ma

Mobile cloud computing (MCC) is embracing rapid development these days and able to provide data outsourcing and sharing services for cloud users with pervasively smart mobile devices. Although these services bring various conveniences, many security concerns such as illegally access and user privacy leakage are inflicted. Aiming to protect the security of cloud data sharing against unauthorized accesses, many studies have been conducted for fine-grained access control using ciphertext-policy attribute-based encryption (CP-ABE). However, a practical and secure data sharing scheme that simultaneously supports fine-grained access control, large university, key escrow free, and privacy protection in MCC with expressive access policy, high efficiency, verifiability, and exculpability on resource-limited mobile devices has not been fully explored yet. Therefore, we investigate the challenge and propose an Efficient and Multiauthority Large Universe Policy-Hiding Data Sharing (EMA-LUPHDS) scheme. In this scheme, we employ fully hidden policy to preserve the user privacy in access policy. To adapt to large scale and distributed MCC environment, we optimize multiauthority CP-ABE to be compatible with large attribute universe. Meanwhile, for the efficiency purpose, online/offline and verifiable outsourced decryption techniques with exculpability are leveraged in our scheme. In the end, we demonstrate the flexibility and high efficiency of our proposal for data sharing in MCC by extensive performance evaluation.


Author(s):  
Kayalvili S ◽  
Sowmitha V

Cloud computing enables users to accumulate their sensitive data into cloud service providers to achieve scalable services on-demand. Outstanding security requirements arising from this means of data storage and management include data security and privacy. Attribute-based Encryption (ABE) is an efficient encryption system with fine-grained access control for encrypting out-sourced data in cloud computing. Since data outsourcing systems require flexible access control approach Problems arises when sharing confidential corporate data in cloud computing. User-Identity needs to be managed globally and access policies can be defined by several authorities. Data is dual encrypted for more security and to maintain De-Centralization in Multi-Authority environment.


2019 ◽  
Vol 8 (3) ◽  
pp. 7721-7726

Agronomy is the cornerstone of nation encountering untimely obstacles in the present scenario. Transducer nexus and their deployment in Farm Monitoring is the major utility for the nation. As agriculture is utmost provenance of nourishment, as there is a necessity to lessen the tariff and human interventions by enlarging productivity. This paper deals with advancement of IoT which lessens the endeavors of human by machine to machine interactions (corroborate through cloud based networks).The consumption of solar power by various devices can be monitored with the help of microcontroller interfaced to sensors and transmit the data through Wi-Fi devices which is stored in cloud based system. Process of irrigation is carried out in various methods using transducers which results in the distinguishing of soil moisture and temperature along with humidity conditions and it also authorizes the user to supervise the gadgets from remote locations using cloud computing systems provided with procured login credentials allocates access to know the status of all the installations through Laptop/PC/Mobile/Tablet.[1]


2021 ◽  
Author(s):  
Shadha Mohamed Sulaiyam ALAmri

Cybersecurity is a critical issue as the world is moving towered IR4 era (Industrial Revaluation 4.0) where technology is involved, and access to the internet is an imperative need. The traditional computing systems are not able to meet the huge computing demand and growing data (Big-Data). Therefore; new technologies have been evolved such as cloud computing. This chapter is exploring the need for a dynamic access control approach to enhance the Cybersecurity. The scope in this chapter is focusing on IaaS (Infrastructure as a Service) layer of cloud computing. The research approach aims to enhance the basic ABAC (Attribute-Based Access Control) model by adding a context-aware feature and SoD principle. The enhanced model called ABACsh. This proposed enhancement is implemented through a framework based on AI (Artificial Intelligent) to meet the requirements of dynamic systems. The framework is tested in the OpenStack testbed. The results show better performance in the term of computation speed.


Sign in / Sign up

Export Citation Format

Share Document