scholarly journals Robot Devastation: Using DIY Low-Cost Platforms for Multiplayer Interaction in an Augmented Reality Game

Author(s):  
David Estevez ◽  
Juan Victores ◽  
Santiago Morante ◽  
Carlos Balaguer
2020 ◽  
Vol 27 (1) ◽  
pp. 1-30 ◽  
Author(s):  
Fabio Zambetta ◽  
William Raffe ◽  
Marco Tamassia ◽  
Florian ’Floyd‚ Mueller ◽  
Xiaodong Li ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 1038
Author(s):  
Sara Condino ◽  
Giuseppe Turini ◽  
Virginia Mamone ◽  
Paolo Domenico Parchi ◽  
Vincenzo Ferrari

Simulation for surgical training is increasingly being considered a valuable addition to traditional teaching methods. 3D-printed physical simulators can be used for preoperative planning and rehearsal in spine surgery to improve surgical workflows and postoperative patient outcomes. This paper proposes an innovative strategy to build a hybrid simulation platform for training of pedicle screws fixation: the proposed method combines 3D-printed patient-specific spine models with augmented reality functionalities and virtual X-ray visualization, thus avoiding any exposure to harmful radiation during the simulation. Software functionalities are implemented by using a low-cost tracking strategy based on fiducial marker detection. Quantitative tests demonstrate the accuracy of the method to track the vertebral model and surgical tools, and to coherently visualize them in either the augmented reality or virtual fluoroscopic modalities. The obtained results encourage further research and clinical validation towards the use of the simulator as an effective tool for training in pedicle screws insertion in lumbar vertebrae.


Author(s):  
Bing Yi ◽  
Renkai Sun ◽  
Long Liu ◽  
Yongfeng Song ◽  
Yinggui Zhang

Abstract It is a challenge for the dynamic inspection of railway route for freight car transporting cargo that out-of-gauge. One possible way is using the inspection frame installed in the inspection train to simulate the whole procedure for cargo transportation, which costs a lot of manpower and material resources as well as time. To overcome the above problem, this paper proposes an augmented reality (AR) based dynamic inspection method for visualized railway routing of freight car with out-of-gauge. First, the envelope model of the dynamic moving train with out-of-gauge cargo is generated by using the orbital spectrum of the railway, and the envelope model is matched with a piece of homemade calibration equipment located on the position of the railway that needs to be inspected. Then, the structure from motion (SFM) algorithm is used to reconstruct the environment where the virtual envelope model occludes the buildings or equipment along the railway. Finally, the distance function is adopted to calculate the distance between the obstacle and the envelope of the freight car with out-of-gauge, determining whether the freight car can pass a certain line. The experimental results show that the proposed method performs well for the route selection of out-of-gauge cargo transportation with low cost, high precision, and high efficiency. Moreover, the digital data of the environments along the railway and the envelope of the freight car can be reused, which will increase the digitalization and intelligence for route selection of out-of-gauge cargo transportation.


2018 ◽  
Vol 116 ◽  
pp. 49-63 ◽  
Author(s):  
Alberto Ruiz-Ariza ◽  
Rafael Antonio Casuso ◽  
Sara Suarez-Manzano ◽  
Emilio J. Martínez-López

Author(s):  
Damien Hompapas ◽  
Christian Sandor ◽  
Alexander Plopski ◽  
Daniel Saakes ◽  
Dong Hyeok Yun ◽  
...  

2008 ◽  
Author(s):  
Robert Sitnik ◽  
Slawomir Pasko ◽  
Maciej Karaszewski ◽  
Marcin Witkowski

2020 ◽  
Vol 13 (6) ◽  
pp. 512-521
Author(s):  
Mohamed Taha ◽  
◽  
Mohamed Ibrahim ◽  
Hala Zayed ◽  
◽  
...  

Vein detection is an important issue for the medical field. There are some commercial devices for detecting veins using infrared radiation. However, most of these commercial solutions are cost-prohibitive. Recently, veins detection has attracted much attention from research teams. The main focus is on developing real-time systems with low-cost hardware. Systems developed to reduce costs suffer from low frame rates. This, in turn, makes these systems not suitable for real-world applications. On the other hand, systems that use powerful processors to produce high frame rates suffer from high costs and a lack of mobility. In this paper, a real-time vein mapping prototype using augmented reality is proposed. The proposed prototype provides a compromised solution to produce high frame rates with a low-cost system. It consists of a USB camera attached to an Android smartphone used for real-time detection. Infrared radiation is employed to differentiate the veins using 20 Infrared Light Emitting Diodes (LEDs). The captured frames are processed to enhance vein detection using light computational algorithms to improve real-time processing and increase frame rate. Finally, the enhanced view of veins appears on the smartphone screen. Portability and economic cost are taken into consideration while developing the proposed prototype. The proposed prototype is tested with people of different ages and gender, as well as using mobile devices of different specifications. The results show a high vein detection rate and a high frame rate compared to other existing systems.


Sign in / Sign up

Export Citation Format

Share Document