scholarly journals Rehabilitation following Surgery for Reconstruction of a Foot Defect

2008 ◽  
Vol 1 ◽  
pp. CCRep.S726
Author(s):  
Susan Faber West ◽  
Peter E. Pidcoe

Background This report illustrates the use of pressure for scar management to aid in foot re-shaping following a surgical intervention to repair an arterio-venous (AV) malformation. Methods This report describes the rehabilitation of a 13-year-old girl after surgical reconstruction of a defect in her left foot following the removal of an AV malformation. Early surgical attempts to repair the problem resulted in complications that required the amputation of toes 2, 3, and 4, and the use of a split thickness skin graft to cover the plantar surface of the medial longitudinal arch on the left foot. Following surgery, the patient had an antalgic gait pattern with decreased weight bearing on the left. The graft obliterated the left medial longitudinal arch and the patient would only weight bear on the heel. The patient had decreased metatarsal joint mobility on the affected side and no movement in the remaining toes. Left talocrural joint active range-of-motion (AROM) was within normal limits and gross ankle muscle force production was assessed to have a grade of 3/5. Results Treatment included reshaping the left foot using a pressure garment and orthotic, followed by interventions to address range-of-motion and muscle force production deficiencies. All treatment objectives were achieved and all patient goals were achieved. Conclusions Pressure was effective in re-shaping the foot to promote normal gait mechanics.

2017 ◽  
Vol 26 (3) ◽  
pp. 239-244 ◽  
Author(s):  
Cameron J. Powden ◽  
Kathleen K. Hogan ◽  
Erik A. Wikstrom ◽  
Matthew C. Hoch

Context:Talocrural joint mobilizations are commonly used to address deficits associated with chronic ankle instability (CAI).Objective:Examine the immediate effects of talocrural joint traction in those with CAI.Design:Blinded, crossover.Setting:Laboratory.Participants:Twenty adults (14 females; age = 23.80 ± 4.02 y; height = 169.55 ± 12.38 cm; weight = 78.34 ± 16.32 kg) with self-reported CAI participated. Inclusion criteria consisted of a history of ≥1 ankle sprain, ≥2 episodes of giving way in the previous 3 mo, answering “yes” to ≥4 questions on the Ankle Instability Instrument, and ≤24 on the Cumberland Ankle Instability Tool.Intervention:Subjects participated in 3 sessions in which they received a single treatment session of sustained traction (ST), oscillatory traction (OT), or a sham condition in a randomized order. Interventions consisted of four 30-s sets of traction with 1 min of rest between sets. During ST and OT, the talus was distracted distally from the ankle mortise to the end-range of accessory motion. ST consisted of continuous distraction and OT involved 1-s oscillations between the mid and end-range of accessory motion. The sham condition consisted of physical contact without force application. Preintervention and postintervention measurements of weight-bearing dorsiflexion, dynamic balance, and static single-limb balance were collected.Main Outcome Measures:The independent variable was treatment (ST, OT, sham). The dependent variables included pre-to-posttreatment change scores for the WBLT (cm), normalized SEBTAR (%), and time-to-boundary (TTB) variables(s). Separate 1-way ANOVAs examined differences between treatments for each dependent variable. Alpha was set a priori at P < .05.Results:No significant treatment effects were identified for any variables.Conclusion:A single intervention of ST or OT did not produce significant changes in weight-bearing dorsiflexion range of motion or postural control in individuals with CAI. Future research should investigate the effects of repeated talocrural traction treatments and the effects of this technique when combined with other manual therapies.


2013 ◽  
Vol 30 (4) ◽  
pp. 486-501 ◽  
Author(s):  
Ben J. Edwards ◽  
Samuel A. Pullinger ◽  
Jonathan W. Kerry ◽  
William R. Robinson ◽  
Tom P. Reilly ◽  
...  

2000 ◽  
Vol 81 (7) ◽  
pp. 895-900 ◽  
Author(s):  
Diane L. Damiano ◽  
Tracy L. Martellotta ◽  
Daniel J. Sullivan ◽  
Kevin P. Granata ◽  
Mark F. Abel

2018 ◽  
Vol 3 (2) ◽  
pp. 2473011418S0001
Author(s):  
Woo-Chun Lee ◽  
Chihoon Ahn ◽  
Ji-Beom Kim ◽  
Mu Hyun Kim

Category: Basic Sciences/Biologics, Midfoot/Forefoot Introduction/Purpose: In the flatfoot patients, collapsed medial longitudinal arch during gait induced pain and it results decreased center of progression excursion index(CPEI) in dynamic pedobarography. Although the CPEI decreased is pathologic gait of flatfoot patients, range of the CPEIs is wide even in similar severity of flatfoot patients. We hypothesized that some flatfoot patients inverted forefoot or elevated first metatarsal head during gait for avoiding the pain from collapsed medial longitudinal arch, which resulted wide range of the CPEIs in flatfoot patients. The purposes of this study were to investigate the incidence of forefoot inversion and 1st metatarsal head elevation during gait in severe symptomatic flatfoot patients, and to confirm whether forefoot inversion and 1st metatarsal head elevation increases the CPEI, by using the dynamic pedobarography. Methods: We retrospectively evaluated patients who underwent surgery for flatfoot in our clinic from January, 2017 to May, 2017. Before surgery, all patients underwent plain weight-bearing radiographs and dynamic pedobarography by using in-shoe plantar pressure assessment system (Tekscan, Inc., South Boston, MA). Radiographic parameters, talonavicular coverage angle, Meary angle and moment arm, and the CPEI in dynamic pedobarogrpahy were measured. The forefoot inversion and the 1st metatarsal head elevation were defined when sum of 3rd-4th and 5th submetatarsal plantar pressure was higher than sum of 1st and 2nd submetatarsal plantar pressure, and when 2nd submetatarsal plantar pressure was higher than 1st submetatarsal plantar pressure, respectively. Correlations between the radiographic parameters and the CPEI were investigated. Incidence of the forefoot inversion and the 1st metatarsal head elevation was investigated. The CPEIs in flatfeet with forefoot inversion or 1st metatarsal head elevation were compared with those in flatfeet without these pain avoidance gait. Results: Twenty-eight flatfeet from 28 patients were included in the present study. The average age of patients was 42.3 years (range: 19-71). Means of the three radiographic parameters and the CPEI of the 28 flatfeet were listed at table.1. There was no significant correlation between the CPEI and the three radiographic parameters.(Table.2) The incidence of forefoot inversion and 1st metatarsal head elevation were 11%(3 feet), 54%(15 feet) respectively. The mean CPEI of the flatfeet with forefoot inversion or 1st metatarsal head elevation was 8(range: -10 – 18), and the mean CPEI of the flatfeet without these two compensations was 5 (range: -3 – 12). The CPEI in the flatfeet with the two compensations was significant larger than that of the flatfeet without the two compensations. (P=0.027) Conclusion: In the present study, forefoot inversion or 1st metatarsal head elevation were happened in 65% of symptomatic flatfoot patients. These two pain avoidance gait shifts weight-bearing load laterally, which decreases collapsing medial longitudinal arch and pain on the flatfoot. Because lateral shifting of weight-bearing load increases the CPEI, flatfoot patients with these two gaits showed high the CPEI. Therefore, the degree of the CPEIs are various even in similar severity of flatfoot and are not correlated with the severity of the flatfoot. Clinicians should consider these pain avoidance gait of flatfoot patients when they interpret a dynamic pedobarography of flatfoot.


2013 ◽  
Vol 5 (3) ◽  
pp. 123-128
Author(s):  
David O. Draper ◽  
Lucia Maloy ◽  
J. Ty Hopkins ◽  
A. Wayne Johnson ◽  
Dennis Eggett ◽  
...  

2019 ◽  
Vol 7 (12) ◽  
pp. 232596711988887 ◽  
Author(s):  
Toufic R. Jildeh ◽  
Kelechi R. Okoroha ◽  
Joseph S. Tramer ◽  
Jorge Chahla ◽  
Benedict U. Nwachukwu ◽  
...  

Background: As the incidence of overuse injuries to the medial elbow in overhead athletes continues to rise, recent evidence suggests a link between these injuries and alterations in biomechanics produced by athlete fatigue. Previous studies have evaluated the effect of fatigue on elbow injuries using a wide array of fatigue protocols/athletic tasks, and, as a consequence, the results have been heterogeneous. Purpose: To determine whether there is a uniform alteration in neuromuscular function or biomechanics as the overhead athlete fatigues. Furthermore, this study sought to determine whether player fatigue should be accounted for in ulnar collateral ligament (UCL) injury prevention programs. Study Design: Systematic review. Methods: A systematic review of the literature using PubMed and MEDLINE databases was performed. Keywords included fatigue, upper extremity, baseball, pitcher, throwing, and muscle activity. Inclusion criteria consisted of original research articles in the English language involving healthy athletes, use of fatigue protocols, and the evaluation of at least 1 upper limb biomechanical variable. Results: A total of 35 studies involving 644 athletes (90 females, 554 males; mean age, 20.2 years) met the inclusion criteria. General fatigue protocols were used in 2 investigations, peripheral protocols were used in all 35 studies, and 5 different athletic tasks were studied (simulated baseball game, overhead throwing, high-effort swimming, simulated tennis game, and overhead serving). There was a uniform decrease in muscle force production and proprioception in athletes after completing a fatigue protocol. However, there was no consistency among studies when evaluating other important upper limb biomechanical factors. The fatigue protocols did not consistently produce statistically significant changes in elbow torque, pitching biomechanics, or ball velocity. Conclusion: A uniform decrease in muscle force production and proprioception was found after fatigue protocols; however, a majority of fatigue protocols published in the current literature are inconsistently measured and produce heterogeneous results. Therefore, currently, no recommendations can be made for changes in UCL injury prevention training programs to account for potential effects of fatigue. The effect of muscle force production and proprioception on upper extremity injuries should be evaluated in future studies.


2018 ◽  
Vol 40 (3) ◽  
pp. 352-355 ◽  
Author(s):  
Eric Swanton ◽  
Lauren Fisher ◽  
Andrew Fisher ◽  
Andrew Molloy ◽  
Lyndon Mason

Background: Weight-bearing radiographic analysis of pes planus deformities show, with varying degree of severity, a break in the Meary line. The break in the Meary line occurs not only at the talonavicular joint but also distal to the spring ligament and reported tibialis posterior insertion. Our aim in this study was to investigate the distal plantar ligaments of the medial longitudinal arch, to try to identify other areas where deformity correction could be affected. Methods: We examined 11 cadaveric lower limbs that had been preserved for dissection in a solution of formaldehyde. The lower limbs were carefully dissected to identify the plantar aspect of the medial longitudinal arch. Results: In all specimens, the tibialis posterior tendon inserted into the plantar medial aspect of the navicular with separate slips to the intermediate and lateral cuneiform. The navicular cuneiform ligament extended from the navicular to medial cuneiform. This structure was statically inserted between the navicular and medial cuneiform, which would allow the pull of the tibialis posterior to act on the navicular and medial cuneiform in tandem. The average width of the naviculocuneiform ligament was 15.2 mm (range 12.4-18.0) compared to 9.5 mm (range 7.6-11.4) for the tibialis posterior tendon. Conclusion: The tibialis posterior tendon inserted into the navicular and continued onto the medial cuneiform to provide a static restraint between 2 bony insertions, thus supporting the distal aspect of the medial longitudinal arch. Clinical Relevance: We are confident that it is a structure of importance in maintaining the distal aspect of the medial longitudinal arch and may therefore have significant clinical and surgical implications when treating the pes planus deformity.


Sign in / Sign up

Export Citation Format

Share Document