RIB AND VERTEBRAL NUMBERS IN SWINE: II. GENETIC ASPECTS

1962 ◽  
Vol 42 (2) ◽  
pp. 240-251 ◽  
Author(s):  
H. T. Fredeen ◽  
J. A. Newman

Genetic parameters for rib and vertebral number in swine were estimated from data for 4,219 pigs produced by 78 sires and 359 dams of the Lacombe breed. Regressions of offspring on mid-parent were.599 ±.017 for vertebral number and.734 ±.020 for rib number and the corresponding full sib correlations estimated from the analysis of variance were.591 ±.071 and.591 ±.060. The genetic correlation between these two skeletal traits was estimated as.813 ±.022 by the regression of offspring on mid-parent and.792 ±.016 by the analysis of components of covariance.Continuous genetic variation for both traits was demonstrated. The modal phenotype (i.e., 16 pairs of ribs and 22 vertebrae) produced progeny more uniform for both traits than did parents of non-modal phenotypes. Bilateral asymmetry (within-pig variance) was also least among progeny of "modal" parents.

bionature ◽  
2018 ◽  
Vol 18 (2) ◽  
Author(s):  
Liliek Haryjanto

Abstract. Growth variation and genetic parameter estimation of Ficus variegata Blume seedlings were done at The Centre for Forest Biotechnology and Tree Improvement, Yogyakarta at 8 months of age. Genetic materials from Banyuwangi population which comprised of 15 families and Cilacap-Pangandaran population comprised of 19 families. The trial was designed as a Randomized Completely Block Design (RCBD) with family as treatment, 3 replications and each replication comprises 10 seedlings. The purpose of this study was to observe  growth variation and genetic parameter of these populations at seedlings level. Analysis of variance was performed to find out family effect on height and diameter traits. Analysis of variance component was used to estimate coefficient of genetic variation, heritability and genetic correlation. This study showed that family effect on height and diameter variation was very significant at both populations. The estimation of coefficient of genetic variation for height and diameter trait ranged from 10.80% (categorized as intermediate) to 18.04%  (categorized as high). Family heritability estimation for height trait ranged from 0.96 to 0.99 and diameter trait ranged from 0.89 to 0.96, both categorized as high. Strong genetic correlation for height and diameter trait ranged from 0.87 to 0.89.Keywords: Nyawai, Ficus variegata,  growth, genetic parameter, seedling.


1956 ◽  
Vol 7 (6) ◽  
pp. 630 ◽  
Author(s):  
JA Morris

Estimates of important genetic parameters have been obtained from an experimental flock using data collected over a period of 3 years. A total of 1784 progeny, obtained from 42 sires and 383 dams, supplied records for analysis. The information was mainly extracted using the analysis of variance and covariance from which estimates of genetic variance and covariance were obtained. Pooling the results within years and, where applicable, within breeding groups, estimates of heritability were obtained as follows: Production Index: part period, 32 per cent.; 72 weeks, 31 per cent. Survivor Index: part period, 33 per cent.; 72 weeks, 33 per cent. The low mortality rate should be borne in mind when comparing the estimates for the Production Index with those obtained by other workers. The estimated genetic correlation between the Production Index for these two periods was 0.72. The magnitude of the heritability estimates indicates the presence of a considerable amount of additive genetic variation. The proportion of this type of genetic variation has probably been increased by the minimizing of environmental variation effected by the randomization of birds over the housing space and, in the case of the part period of recording, by the corrections applied for hatching date influence. Early selection, based on partial records, has been shown to be approximately 1½ times as effective in producing genetic improvement as selection based on the full production.


Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1409-1416 ◽  
Author(s):  
Kenneth R Koots ◽  
John P Gibson

Abstract A data set of 1572 heritability estimates and 1015 pairs of genetic and phenotypic correlation estimates, constructed from a survey of published beef cattle genetic parameter estimates, provided a rare opportunity to study realized sampling variances of genetic parameter estimates. The distribution of both heritability estimates and genetic correlation estimates, when plotted against estimated accuracy, was consistent with random error variance being some three times the sampling variance predicted from standard formulae. This result was consistent with the observation that the variance of estimates of heritabilities and genetic correlations between populations were about four times the predicted sampling variance, suggesting few real differences in genetic parameters between populations. Except where there was a strong biological or statistical expectation of a difference, there was little evidence for differences between genetic and phenotypic correlations for most trait combinations or for differences in genetic correlations between populations. These results suggest that, even for controlled populations, estimating genetic parameters specific to a given population is less useful than commonly believed. A serendipitous discovery was that, in the standard formula for theoretical standard error of a genetic correlation estimate, the heritabilities refer to the estimated values and not, as seems generally assumed, the true population values.


2020 ◽  
Author(s):  
Edwin Lauer ◽  
Andrew Sims ◽  
Steven McKeand ◽  
Fikret Isik

Abstract Genetic parameters were estimated using a five-series multienvironment trial of Pinus taeda L. in the southern USA. There were 324 half-sib families planted in five test series across 37 locations. A set of six variance/covariance matrices for the genotype-by-environment (G × E) effect for tree height and diameter were compared on the basis of model fit. In single-series analysis, extended factor analytical models provided generally superior model fit to simpler models for both traits; however, in the combined-series analysis, diameter was optimally modeled using simpler variance/covariance structures. A three-way compound term for modeling G × E interactions among and within series yielded substantial improvements in terms of model fit and standard errors of predictions. Heritability of family means ranged between 0.63 and 0.90 for both height and diameter. Average additive genetic correlations among sites were 0.70 and 0.61 for height and diameter, respectively, suggesting the presence of some G × E interaction. Pairs of sites with the lowest additive genetic correlations were located at opposite ends of the latitude range. Latent factor regression revealed a small number of parents with large factor scores that changed ranks significantly between southern and northern environments. Study Implications Multienvironmental progeny tests of loblolly pine (Pinus taeda L.) were established over 10 years in the southern United States to understand the genetic variation for the traits of economic importance. There was substantial genetic variation between open-pollinated families, suggesting that family selection would be efficient in the breeding program. Genotype-by-environment interactions were negligible among sites in the deployment region but became larger between sites at the extremes of the distribution. The data from these trials are invaluable in informing the breeding program about the genetic merit of selection candidates and their potential interaction with the environment. These results can be used to guide deployment decisions in the southern USA, helping landowners match germplasm with geography to achieve optimal financial returns and conservation outcomes.


2016 ◽  
Vol 65 (1) ◽  
pp. 71-82 ◽  
Author(s):  
M.K. Pagliarini ◽  
W.S. Kieras ◽  
J.P. Moreira ◽  
V.A. Sousa ◽  
J.Y. Shimizu ◽  
...  

AbstractThe study was conducted to estimate the stability, adaptability, productivity and genetic parameters in Slash pine second-generation half-sib families, considering phenotypic traits in early age. Forty-four families from a first generation seed orchard in Colombo-PR, Brazil, were used in this study. Two progenies tests were established in a randomized complete block design. The first test was implemented in March 2009 in Ribeirão Branco, São Paulo state, containing 40 blocks, one tree per plot, 44 treatments (progenies) and 6 controls. Another test was implemented in Ponta Grossa, Paraná state, using the same experimental design and number of plants per plot, and with 24 treatments, 32 blocks. The growth traits evaluated were total height, diameter at breast height (dbh) and wood volume, within five years. The form traits evaluated were stem form, branch thickness, branch angle, number of branches, fork and fox tail five years after planting. Deviance analysis and estimates of stability, adaptability, productivity and genetic parameters were performed using the methods of best linear unbiased predictor (BLUP) and residual maximum likelihood (REML). There was significant variation among progenies for growth and form traits. Considerable genetic variation was detected mainly for wood volume. High coefficients of genetic variation and heritability showed low environmental influence on phenotypic variation, which is important for the prediction of genetic gain by selection. Crosses between different progenies individuals groups will be prioritized for obtaining heterotics genotypes and increase the probability of obtaining high specific combining ability.


1982 ◽  
Vol 62 (3) ◽  
pp. 665-670 ◽  
Author(s):  
D. C. JEFFRIES ◽  
R. G. PETERSON

Genetic parameters were estimated for 2403 purebred Yorkshire pigs over a 2-yr period, representing 21 sires. The traits studied included average daily gain, age adjusted to 90 kg, ultrasonic measurements of backfat at the mid-back and loin positions, total and adjusted total ultrasonic backfat and corresponding carcass backfat measurements. Least squares analyses were used to estimate and adjust for the effects of sex, year-season and sex by year-season interaction. Heritabilities and genetic correlations were calculated for all traits using both half- and full-sib estimates. Adjusted age and adjusted total ultrasonic backfat measurements were found to have the highest heritabilities of the live traits in this study. Estimates of heritability for adjusted age and adjusted total ultrasonic backfat were 0.24 ± 0.10 and 0.26 ± 0.10 based on half-sib and 0.56 ± 0.07 and 0.41 ± 0.06 from full-sib analyses. The genetic correlation between these two traits was −0.07 ± 0.28 based on the half-sib method. The total phenotypic correlation was −0.01 ± 0.02. Key words: Swine, ultrasonic backfat, heritabilities, genetic correlations


2000 ◽  
Vol 43 (3) ◽  
pp. 287-298
Author(s):  
J. Bizelis ◽  
A. Kominakis ◽  
E. Rogdakis ◽  
F. Georgadopoulou

Abstract. Production and reproduetive traits in Danish Landrace (LD) and Large White (LW) swine were analysed by restricted maximum likelihood methods to obtain heritabilities as well as genetic and phenotypic correlations. Production traits were: age, backfat thickness (BT), muscle depth (MD) and the ratio BT/MD, adjusted to Standard bodyweight of 85 kg. Reproduction traits were: number of pigs born (NB) and number of pigs weaned (NW) per sow and parity. Heritabilities for age, BT, MD and BT/MD were 0.60, 0.44, 0.51 and 0.42 for LD and 0.36, 0.44, 0.37 and 0.45 for LW, respectively. Genetic correlations between age and BT were −0.22 in LD and – 0.44 in LW. The genetic correlation between age and MD was close to zero in both breeds. Genetic correlation between BT and MD were −0.36 and −0.25 in LD and LW, respectively. Heritabilities for NB were 0.25 in LD and 0.13 in LW while heritabilities for NW were close to zero in both breeds. Genetic correlation between NB and NW was 0.46 and 0.70 in LD and LW, respectively.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 347-347
Author(s):  
Pourya Davoudi ◽  
Duy Ngoc Do ◽  
Guoyu Hu ◽  
Siavash Salek Ardestani ◽  
Younes Miar

Abstract Feed cost is the major input cost in the mink industry and thus improvement of feed efficiency through selection for high feed efficient mink is necessary for the mink farmers. The objective of this study was to estimate the heritability, phenotypic and genetic correlations for different feed efficiency measures, including final body weight (FBW), daily feed intake (DFI), average daily gain (ADG), feed conversion ratio (FCR) and residual feed intake (RFI). For this purpose, 1,088 American mink from the Canadian Center for Fur Animal Research at Dalhousie Faculty of Agriculture were recorded for daily feed intake and body weight from August 1 to November 14 in 2018 and 2019. The univariate models were used to test the significance of sex, birth year and color as fixed effects, and dam as a random effect. Genetic parameters were estimated via bivariate models using ASReml-R version 4. Estimates of heritabilities (±SE) were 0.41±0.10, 0.37±0.11, 0.33±0.14, 0.24±0.09 and 0.22±0.09 for FBW, DFI, ADG, FCR and RFI, respectively. The genetic correlation (±SE) was moderate to high between FCR and RFI (0.68±0.15) and between FCR and ADG (-0.86±0.06). In addition, RFI had low non-significant (P > 0.05) genetic correlations with ADG (0.04 ± 0.26) and BW (0.16 ± 0.24) but significant (P < 0.05) high genetic correlation with DFI (0.74 ± 0.11) indicating that selection for lower RFI will reduce feed intake without adverse effects on the animal size and growth rate. The results suggested that RFI can be implemented in genetic/genomic selection programs to reduce feed intake in the mink production system.


1995 ◽  
Vol 1995 ◽  
pp. 48-48
Author(s):  
I.W. Purvis ◽  
J.P. Hanrahan

In order to evaluate genetic gain in populations under selection it is necessary to be able to partition the observed response into genetic and environmental components. This requires estimates of the appropriate genetic and environmental (co)variances unless appropriate genetic controls are available. Growth rate is an important component of the breeding objective for sheep breeds used as terminal sires and, whereas older estimates of the contribution of genetic variation to differences in preweaning growth indicated heritabilities of the order of 0.1, more recent studies have indicated considerably higher values. The present report concerns analyses of preweaning growth data on purebred Suffolk and Texel sheep to estimate genetic parameters for preweaning growth traits and genetic trend in growth rate from birth to weaning.


Sign in / Sign up

Export Citation Format

Share Document