Variation in chickpea germplasm for tolerance to imazethapyr and imazamox herbicides

2010 ◽  
Vol 90 (1) ◽  
pp. 139-142 ◽  
Author(s):  
B. Taran ◽  
T D Warkentin ◽  
A Vandenberg ◽  
F A Holm

Tolerance to the imidazolinone class of herbicides would be a desirable agronomic trait for chickpea (Cicer arietinum L.) grown in western Canada. Identification of germplasm tolerant to imidazolinones and incorporation of this tolerance into future varieties will allow an integrated weed management strategy in chickpea. The current study evaluated the variation of diverse chickpea germplasm and cultivars available in Canada for tolerance to the imidazolinone class of herbicides under greenhouse conditions. Large differences among the genotypes in response to a mixture of imazethapyr and imazamox were observed. Several accessions were identified with tolerance to a mixture of imazethapyr and imazamox. Conventional breeding for imazethapyr/imazamox tolerance in chickpea is feasible. The simple screening used in the current study allows for rapid progress towards the development of herbicide-tolerant cultivars.Key words: Chickpea, germplasm, imazethapyr, imazamox, tolerance

2019 ◽  
Vol 5 (1) ◽  
pp. 1620152
Author(s):  
Bulti Merga ◽  
Nano Alemu ◽  
Fatih Yildiz

2019 ◽  
Vol 70 (2) ◽  
pp. 140 ◽  
Author(s):  
Gulshan Mahajan ◽  
Kerry McKenzie ◽  
Bhagirath S. Chauhan

Annual ryegrass (ARG) (Lolium rigidum Gaudin) is a problematic weed for chickpea (Cicer arietinum L.) production in Australia. Understanding the critical period of control of ARG in chickpea is important for developing effective integrated management strategies to prevent unacceptable yield loss. Experiments were conducted over 2 years at the research farm of the University of Queensland, Gatton, to evaluate the effect of chickpea row spacing (25 and 75cm) and cultivar (PBA Seamer and PBA HatTrick) and ARG infestation period (from 0, 3 and 6 weeks after planting (WAP), and weed-free) on ARG suppression and grain yield of chickpea. Year×treatment interactions were not significant for any parameter, and none of the treatment combinations showed any interaction for grain yield. Average grain yield was greater (20%) with 25-cm than 75-cm rows. On average, PBA Seamer had 9% higher yield than PBA HatTrick. Average grain yield was lowest in season-long weedy plots (562kg ha–1) and highest in weed-free plots (1849kg ha–1). Grain yield losses were lower when ARG emerged at 3 WAP (1679kg ha–1). Late-emerged ARG (3 and 6 WAP) had lower biomass (4.7–22.2g m–2) and number of spikes (5–24m–2) than ARG that emerged early; at 0 WAP, weed biomass was 282–337g m–2 and number of spikes 89–120m–2. Compared with wide row spacing, narrow row spacing suppressed ARG biomass by 16% and 52% and reduced number of spikes of ARG by 26% and 48% at 0 WAP and 3 WAP, respectively. PBA Seamer suppressed ARG growth more effectively than PBA HatTrick, but only in the season-long weedy plots. Our results imply that in ARG-infested fields, grain yield of chickpea can be increased by exploring narrow row spacing and weed-competitive cultivars. These cultural tools could be useful for developing integrated weed management tactics in chickpea in combination with pre-emergent herbicides.


2006 ◽  
Vol 86 (4) ◽  
pp. 1273-1279 ◽  
Author(s):  
E. G. Smith ◽  
B. M. Upadhyay ◽  
R. E. Blackshaw ◽  
H. J. Beckie ◽  
K. N. Harker ◽  
...  

Integrated weed management (IWM) systems that combine seeding date, seeding rate, herbicide rate, and timing of nitrogen (N) fertilizer application were assessed for their economic performance in the Dark Brown and Black soil zones. A barley-field pea IWM system in the Black soil zone at Lacombe, Alberta, and a wheat-canola IWM system in the Dark Brown soil zone at Lethbridge, Alberta, and Scott, Saskatchewan, were used to assess contributions of seeding date (April or May), seeding rate (recommended or 150% of recommended), fertilizer timing (fall or spring), and in-crop herbicide rate (50% or 100% of recommended). The factorial set of treatments was applied in 4 consecutive years at each site. For barley-field pea production, the highest contribution margin (CM) (returns over variable production costs) was earned with 50% of the recommended herbicide rate, spring application of N fertilizer, seeding barley later at the high seeding rate, and seeding field pea early at the recommended seeding rate. This IWM system had a CM benefit of at least $51 ha-1 compared with current common practices. The wheat-canola system results were site specific. At Lethbridge, it was more profitable to use 50% of recommended herbicide rates and to seed both crops early, with an early seeding date being very important for canola. The CM of this IWM system was $48 ha-1 higher than current common practices. At Scott, the wheat-canola system was more profitable with spring fertilizer application, 50% of the recommended herbicide rate, and an early seeding date for canola. The best IWM system had a CM $15 to $75 ha-1 higher, depending on the year, than common practices. Our results confirmed the economic merits of using IWM practices for cereal-oilseed and cereal-pulse cropping systems in these regions of western Canada. Key words: Economic, integrated weed management, contribution margin, canola, wheat, field pea, barley


2009 ◽  
Vol 89 (3) ◽  
pp. 515-516 ◽  
Author(s):  
B. Taran ◽  
T. Warkentin ◽  
S. Banniza ◽  
A. Vandenberg

CDC Corinne, a desi chickpea (Cicer arietinum L.) cultivar, was released in 2008 by the Crop Development Centre, University of Saskatchewan, for distribution to Select seed growers in western Canada through the Variety Release Program of the Saskatchewan Pulse Growers. CDC Corinne has a pinnate leaf type, fair resistance to ascochyta blight [Ascochyta rabiei (Pass.) Lab.], medium maturity, medium seed size and higher yield potential than Myles in the Brown and Dark Brown soil zones of the Canadian prairies. Key words: Chickpea, Cicer arietinum L., cultivar description, ascochyta blight


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2104
Author(s):  
Aurelio Scavo ◽  
Giovanni Mauromicale

In the face of yield losses caused by weeds, especially in low-input agricultural systems, and environmental pollution due to the excessive use of synthetic herbicides, sustainable weed management has become mandatory. To address these issues, allelopathy, i.e., the biochemical phenomenon of chemical interactions between plants through the release of secondary metabolites into the environment, is gaining popularity. Although many important crops are known for their allelopathic potential, farmers are still reluctant to use such knowledge practically. It is therefore important to assist advisors and farmers in assessing whether allelopathy can be effectively implemented into an eco-friendly weed management strategy. Here, we aim to give a comprehensive and updated review on the herbicidal potential of allelopathy. The major findings are the following: (1) Crops from different botanical families show allelopathic properties and can be cultivated alone or in combination with other non-allelopathic crops. (2) Many allelopathic tools can be adopted (crop rotation, intercropping, cover cropping as living or dead mulches, green manuring, use of allelochemical-based bioherbicides). (3) These methods are highly flexible and feature increased efficiency when combined into an integrated weed management strategy. (4) Recent advances in the chemistry of allelopathy are facilitating the use of allelochemicals for bioherbicide production. (5) Several biotechnologies, such as stress induction and genetic engineering techniques, can enhance the allelopathic potential of crops or introduce allelopathic traits de novo. This review shows how important the role of allelopathy for sustainable weed management is and, at the same time, indicates the need for field experiments, mainly under an integrated approach. Finally, we recommend the combination of transgenic allelopathy with the aforementioned allelopathic tools to increase the weed-suppressive efficacy of allelopathy.


Weed Science ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Cory E. Jacob ◽  
Eric N. Johnson ◽  
Miles F. Dyck ◽  
Christian J. Willenborg

The inclusion of competitive crop cultivars in crop rotations is an important integrated weed management (IWM) tool. However, competitiveness is often not considered a priority for breeding or cultivar selection by growers. Field pea (Pisum sativumL.) is often considered a poor competitor with weeds, but it is not known whether competitiveness varies among semileafless cultivars. The objectives of this study were to determine if semileafless field pea cultivars vary in their ability to compete and/or withstand competition, as well as to identify aboveground trait(s) that may be associated with increased competitive ability. Field experiments were conducted in 2012 and 2013 at three locations in western Canada. Fourteen semileafless field pea cultivars were included in the study representing four different market classes. Cultivars were grown either in the presence or absence of model weeds (wheat and canola), and competitive ability of the cultivars was determined based on their ability to withstand competition (AWC) and their ability to compete (AC). Crop yield, weed biomass and weed fecundity varied among sites but not years. Cultivars exhibited inconsistent differences in competitive ability, although cv. Reward consistently exhibited the lowest AC and AWC. None of the traits measured in this study correlated highly with competitive ability. However, the highest-yielding cultivars generally were those that had the highest AC, whereas cultivars that ranked highest for AWC were associated with lower weed fecundity. Ranking the competitive ability of field pea cultivars could be an important IWM tool for growers and agronomists.


Sign in / Sign up

Export Citation Format

Share Document