Point mutation in acetolactate synthase confers sulfonylurea and imidazolinone herbicide resistance in spiny annual sow-thistle [Sonchus asper (L.) Hill]

2012 ◽  
Vol 92 (2) ◽  
pp. 303-309 ◽  
Author(s):  
Kee Woong Park ◽  
Judith M. Kolkman ◽  
Carol A. Mallory-Smith

Park, K. W., Kolkman, J. M. and Mallory-Smith, C. A. 2012. Point mutation in acetolactate synthase confers sulfonylurea and imidazolinone herbicide resistance in spiny annual sow-thistle [Sonchus asper (L.) Hill]. Can. J. Plant Sci. 92: 303–309. Suspected thifensulfuron resistant spiny annual sow-thistle was identified near Colfax, Washington, in two fields with a winter wheat and lentil rotation. Therefore, studies were conducted to examine resistance of spiny annual sow-thistle to thifensulfuron and cross-resistance to other acetolactate synthase inhibitors and to determine the physiological and molecular basis for herbicide resistance. Whole-plant bioassay confirmed that the biotype was highly resistant to the sulfonylurea (SU) herbicides, thifensulfuron, metsulfuron, and prosulfuron. The resistant (R) biotype was also highly resistant to the imidazolinone (IMI) herbicides, imazamox and imazethapyr. An in vivo acetolactate synthase (ALS) assay indicated that the concentrations of SU and IMI herbicides required for 50% inhibition (I50) were more than 10 times greater for R biotype compared with susceptible (S) biotype. Analysis of the nucleotide and predicted amino acid sequences for ALS genes demonstrated a single-point mutation from C to T at the als1 gene, conferring the substitution of the amino acid leucine for proline in the R biotype at position197. The results of this research indicate that the resistance of spiny annual sow-thistle to SU and IMI herbicides is due to on altered target site and caused by a point mutation in the als1 gene.

Weed Science ◽  
1992 ◽  
Vol 40 (4) ◽  
pp. 670-677 ◽  
Author(s):  
Mary J. Guttieri ◽  
Charlotte V. Eberlein ◽  
Carol A. Mallory-Smith ◽  
Donald C. Thill ◽  
David L. Hoffman

The DNA sequence of a 196 base pair (bp) region of the acetolactate synthase (ALS) genes of three weed species, kochia, prickly lettuce, and Russian thistle, was determined. This region encompasses the coding sequence for Domain A, a region of the amino acid sequence previously demonstrated to play a pivotal role in conferring resistance to herbicides that inhibit ALS. The Domain A DNA sequence from a chlorsulfuron-resistant (R) prickly lettuce biotype from Idaho differed from that of a chlorsulfuron-susceptible (S) biotype by a single point mutation, which substituted a histidine for a proline. The Domain A DNA sequence from an R kochia biotype from Kansas also differed from that of an S biotype by a single point mutation in the same proline codon. This point mutation, however, conferred substitution of threonine for proline. Two different ALS-homologous sequences were isolated from an R biotype of Russian thistle. Neither sequence encoded amino acid substitutions in Domain A that differed from the consensus S sequence. The DNA sequence variation among the R and S kochia biotypes was used to characterize six Ada County, Idaho, kochia collections for correlation between phenotypic chlorsulfuron susceptibility and restriction digest patterns (RFLPs) of polymerase chain reaction amplification products. Most collections showed excellent correspondence between the RFLP patterns and the phenotypic response to chlorsulfuron application. However, one entirely R collection had the RFLP pattern of the S biotype, suggesting that resistance was not due to mutation in the proline codon.


Weed Science ◽  
2009 ◽  
Vol 57 (5) ◽  
pp. 474-481 ◽  
Author(s):  
Fabiane P. Lamego ◽  
Dirk Charlson ◽  
Carla A. Delatorre ◽  
Nilda R. Burgos ◽  
Ribas A. Vidal

Soybean is a major crop cultivated in Brazil, and acetolactate synthase (ALS)-inhibiting herbicides are widely used to control weeds in this crop. The continuous use of these ALS-inhibiting herbicides has led to the evolution of herbicide-resistant weeds worldwide. Greater beggarticks is a polyploid species and one of the most troublesome weeds in soybean production since the discovery of ALS-resistant biotypes in 1996. To confirm and characterize the resistance of greater beggarticks to ALS inhibitors, whole-plant bioassays and enzyme experiments were conducted. To investigate the molecular basis of resistance in greater beggarticks theALSgene was sequenced and compared between susceptible and resistant biotypes. Our results confirmed that greater beggarticks is resistant to ALS inhibitors and also indicated it possesses at least three isoforms of theALSgene. Analysis of the nucleotide and deduced amino acid sequences among the isoforms and between the biotypes indicated that a single point mutation, G–T, in oneALSisoform from the resistant biotype resulted in an amino acid substitution, Trp574Leu. Two additional substitutions were observed, Phe116Leu and Phe149Ser, in a second isoform of the resistant biotype, which were not yet reported in any other herbicide-resistantALSgene; thus, their role in conferring herbicide resistance is not yet ascertained. This is the first report ofALSmutations in an important, herbicide-resistant weed species from Brazil.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhan Yin ◽  
Nils Burger ◽  
Duvaraka Kula-Alwar ◽  
Dunja Aksentijević ◽  
Hannah R. Bridges ◽  
...  

AbstractMitochondrial complex I is central to the pathological reactive oxygen species (ROS) production that underlies cardiac ischemia–reperfusion (IR) injury. ND6-P25L mice are homoplasmic for a disease-causing mtDNA point mutation encoding the P25L substitution in the ND6 subunit of complex I. The cryo-EM structure of ND6-P25L complex I revealed subtle structural changes that facilitate rapid conversion to the “deactive” state, usually formed only after prolonged inactivity. Despite its tendency to adopt the “deactive” state, the mutant complex is fully active for NADH oxidation, but cannot generate ROS by reverse electron transfer (RET). ND6-P25L mitochondria function normally, except for their lack of RET ROS production, and ND6-P25L mice are protected against cardiac IR injury in vivo. Thus, this single point mutation in complex I, which does not affect oxidative phosphorylation but renders the complex unable to catalyse RET, demonstrates the pathological role of ROS production by RET during IR injury.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Yingying Mao ◽  
Xuejun Wang ◽  
Renhe Yan ◽  
Wei Hu ◽  
Andrew Li ◽  
...  

2000 ◽  
Vol 19 (4) ◽  
pp. 672-682 ◽  
Author(s):  
Jun Xie ◽  
Martine Collart ◽  
Marc Lemaire ◽  
Gertraud Stelzer ◽  
Michael Meisterernst

2016 ◽  
Vol 9 (2) ◽  
pp. 581-594 ◽  
Author(s):  
Patrícia Raleiras ◽  
Namita Khanna ◽  
Hélder Miranda ◽  
Lívia S. Mészáros ◽  
Henning Krassen ◽  
...  

The uptake hydrogenase HupSL became a H2 producer in N. punctiforme after modifying the proximal FeS cluster with the single point mutation C12P.


Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Terry R. Wright ◽  
Newell F. Bascomb ◽  
Stephen F. Sturner ◽  
Donald Penner

Three sugarbeet selections differing in cross-resistance to three classes of acetolactate synthase (ALS)-inhibiting herbicides have been developed using somatic cell selection. Sugarbeet selections resistant to imidazolinone herbicides,Sir-13and93R30B, do not metabolize [14C]-imazethapyr any faster or differently than sensitive, wild-type sugarbeets or a sulfonylurea-resistant/imidazolinone-sensitive selection, Sur. ALS specific activity from the three herbicide-resistant selections ranged from 73 to 93% of the wild-type enzyme extracts in the absence of herbicide, indicating enzyme overexpression was not a factor in resistance. Acetolactate synthase from Sir-13 plants showed a 40-fold resistance to imazethapyr but no resistance to chlorsulfuron or flumetsulam. Polymerase chain reaction amplification and sequencing of two regions of the ALS gene spanning all known sites for ALS-based herbicide resistance in plants indicated a single nucleotide change in theSir-13gene (G337to A337) resulting in a deduced substitution of threonine for alanine at position 113 in the sugarbeet amino acid sequence. Sur ALS was not significantly resistant to imazethapyr, but was 1,000- and 50-fold resistant to chlorsulfuron and flumetsulam, respectively.Surgene sequencing indicated a single nucleotide change(C562to T562) resulting in a serine for proline substitution at position 188 of the ALS primary structure. The93R30Bnucleotide sequence indicated two mutations resulting in two deduced amino acid substitutions: threonine for alanine at position 113 plus serine for proline at position 188. The93R30Bdouble mutant incorporated the changes observed in each of the single mutants above and correlated with higher resistance levels to imazethapyr (> 1,000-fold), chlorsulfuron (4,300-fold), and flumetsulam (200-fold) at the ALS level than observed in either of the single mutants.93R30Brepresents the first double mutant derived by a two-step selection process that incorporates two class-specific ALS-inhibitor resistance mutations to form a single broad cross-resistance trait. The interaction of the two altered amino acids is synergistic with respect to enzyme resistance vs. the resistance afforded by each of the individual mutations.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 191-197 ◽  
Author(s):  
Michael J. Christoffers ◽  
Vijay K. Nandula ◽  
Kirk A. Howatt ◽  
Todd R. Wehking

Inhibitors of acetolactate synthase (ALS) are important herbicides for control of wild mustard, a common weed of the north central United States and Canada. Wild mustard that survived treatments with the ALS inhibitors cloransulam, imazethapyr, and thifensulfuron was sampled from a North Dakota soybean field in 1999. The mechanism of resistance and response of this wild mustard biotype to ALS-inhibiting herbicides was investigated. In vitro enzyme-inhibition experiments confirmed a resistance mechanism associated with the ALS enzyme; imazethapyr or imazamox at 1 × 10−4M caused only 10 to 11% and 12 to 16% reductions in ALS activity, respectively. ALS from a susceptible wild mustard biotype was inhibited 50% (I50) with imazethapyr at 8 × 10−7M or imazamox at 1.1 × 10−6M. Whole-plant greenhouse treatments confirmed cross-resistance across ALS-inhibitor classes. Treatment with twice-normal field rates of thifensulfuron, ethametsulfuron, triflusulfuron, imazamox, imazethapyr, flumetsulam, cloransulam, flucarbazone, and imazamethabenz reduced biomass of the susceptible biotype at least 96% 28 d after treatment. Biomass of the resistant biotype was reduced 49% by triflusulfuron and 35% by thifensulfuron, but was not reduced by other herbicides. DNA sequence analysis of ALS genes from resistant and susceptible biotypes revealed a point mutation inferring a Trp-to-Leu amino acid substitution in ALS of the resistant biotype. This mutation, corresponding to position 574 of theArabidopsisALS amino acid sequence, is known to confer cross-resistance to ALS-inhibiting herbicides and is the probable cause of resistance in the wild mustard biotype. Phylogenetic analysis of wild mustard and canola ALS sequences confirmed that the Trp574mutation arose within wild mustard and was not derived via introgression from imidazolinone-resistant canola. The results of this research indicate a naturally occurring target-site point mutation responsible for conferring cross-resistance to ALS-inhibiting herbicides in this wild mustard biotype.


1996 ◽  
Vol 1 (12) ◽  
pp. 1087-1099 ◽  
Author(s):  
Kohtaro Fukushima ◽  
Seiichi Motomura ◽  
Akio Kuraoka ◽  
Hitoo Nakano ◽  
Takeharu Nishimoto

Sign in / Sign up

Export Citation Format

Share Document