Morphological and molecular analyses in micropropagated berry plants acclimatized under ex vitro condition

2012 ◽  
Vol 92 (6) ◽  
pp. 1065-1073 ◽  
Author(s):  
S. C. Debnath ◽  
P. Vyas ◽  
J. C. Goyali ◽  
A. U. Igamberdiev

Debnath, S. C., Vyas, P., Goyali, J. C. and Igamberdiev, A. U. 2012. Morphological and molecular analyses in micropropagated berry plants acclimatized under ex vitro condition. Can. J. Plant Sci. 92: 1065–1073. Berry crops include, but are not limited to, the members of the genera Fragaria (strawberry; Rosaceae), Rubus (brambles: raspberry and blackberry; Rosaceae), Vaccinium (blueberry, cranberry and lingonberry; Ericaceae) and Ribes (currant and gooseberry; Grossulariaceae). While berry fruits have long enjoyed huge popularity among consumers, tremendous progress in plant tissue culture, resulting in great advances in micropropagation, has occurred. The in vitro morphogenesis seems to be highly dependent on plant growth regulators and media used for culture, which is again genotype specific. Although automation of micropropagation in bioreactors has been advanced as a possible way of reducing the cost of propagation, optimal plant production depends on better understanding of physiological and biochemical responses of plants to the signals of the culture microenvironment and an optimization of specific physical and chemical culture conditions to control the morphogenesis of berry plants in liquid culture systems. Increased branching, vigorous vegetative growth and change in biochemical components are often noted in micropropagated plants acclimatized under ex vitro condition. Clonal fidelity can be a serious problem and strategies have been developed to reduce the variation to manageable levels. Molecular markers have been introduced in tissue culture research and can potentially be used in various facets of pertinent studies with berry crops. This paper describes in depth the progress of various aspects of berry propagation in vitro, the characterization of micropropagated berry plants for morphological characters, and the employment of molecular markers in these plants for the assessment of genetic fidelity, uniformity, stability and trueness-to-type among donor plants and tissue culture regenerants.

2011 ◽  
Vol 91 (1) ◽  
pp. 147-157 ◽  
Author(s):  
Samir Debnath

Debnath, S. C. 2011. Bioreactors and molecular analysis in berry crop micropropagation – A review. Can. J. Plant Sci. 91: 147–157. While berry fruits have long enjoyed huge popularity among consumers, tremendous progress in plant tissue culture, resulting in great advances in micropropagation, has occurred. Of particular significance has been the evolution of the technology permitting multiplication of berry plants in bioreactors containing liquid media. Although automation of micropropagation in bioreactors has been advanced as a possible way of reducing propagation cost, optimal plant production depends upon better understanding of physiological and biochemical responses of plant to the signals of culture microenvironment and an optimization of specific physical and chemical culture conditions to control the morphogenesis of berry plants in liquid culture systems. Clonal fidelity can be a serious problem, and molecular strategies have been developed in order to reduce the variation to manageable levels. Molecular markers have been introduced to tissue culture research and can potentially be used in various facets of pertinent studies with berry crops. The paper focuses on bioreactor systems combined with semi-solid media used for in vitro culture of berry crops, cultivation of micropropagules and employment of molecular markers in micropropagated plants for the assessment of genetic fidelity, uniformity, stability and trueness-to-type among donor plants and tissue culture regenerants. The pertinent literature is reviewed and the relative merits and shortcomings of the various molecular markers applied are presented with an emphasis on the nature of tissue culture-induced variation.


2016 ◽  
Vol 34 (3) ◽  
pp. 75-79 ◽  
Author(s):  
Allison D Oakes ◽  
Tyler R. Desmarais ◽  
William A. Powell ◽  
Charles A. Maynard

Tissue culture of plants has many applications, from producing genetically identical horticultural varieties, to production of secondary metabolites, to virus indexing, and most relevantly, developing novel traits by genetic transformation. Using Agrobacterium-mediated transformation on somatic embryos, blight-resistant American chestnuts [Castanea dentata (Marsh.) Borkh.] have been developed as shoot cultures in plant tissue culture. Rooting tissue-cultured shoots and acclimatizing the rooted plantlets are key steps in tree production. In this study, in vitro and ex vitro rooting methods were compared. The ex vitro method resulted in a lower initial rooting percentage but an overall higher survival percentage, resulting in higher potted plant production. The higher survival was likely due to partial acclimatization taking place before the plantlets were transplanted into potting mix. After 8 weeks, plantlets rooted via the ex vitro method were taller, and had more, and larger, leaves than the in vitro-rooted plantlets. These trees are currently in high demand for inoculation studies for federal regulatory review and eventually for restoration of this keystone species to its native habitat.


2019 ◽  
pp. 57-67
Author(s):  
T.M. Tabatskaya ◽  
N.I. Vnukova

A technique for the long-term (up to 27 years) in vitro storage of valuable birch genotypes under normal (25 °C, 2.0 klx, 16-h day and 8-h night) and low temperature (4 °C, 0.5 klx, 6-h day and 18-h night) growing conditions on hormone-free media has been described. The study explored for the first time the influence of different strategies to store the clones of Betula pubescens and B. pendula var. сarelica (6 genotypes) on the regenerative capacity of collection samples, adaptive potential of regenerated plants and plant production by the in vitro and ex vitro techniques. It was established that both storage strategies provided a persistently high survival rate (82-100%) and regenerative capacity of in vitro shoots (the multiplication coefficient of 4.2-6.3 and rhizogenic activity of 90-100%). The clones retained their characteristics of height growth under the in vitro and ex vitro conditions, and demonstrated intraclonal homogeneity and lack of signs of somaclonal variability. The plants showed substantial interspecific differences at the stage of multiplication and transfer to the greenhouse. The highest percentage of acclimated plants (75-98% depending on the clone genotype) was obtained after planting of micro plants straight in the greenhouse, which simplified the technology and made plant production less costly. long-term in vitro storage, birch, species, genotype, micropropagation, ex vitro adaptation, plant material


1970 ◽  
Vol 45 (1) ◽  
pp. 75-78 ◽  
Author(s):  
Shahina Islam ◽  
Mosfequa Zahan ◽  
Shahina Akter ◽  
Tanjina Akhtar Banu ◽  
Ahashan Habib ◽  
...  

An efficient mass propagation method for Feronia limonia was developed from excised shoot tips and nodal explants of in vitro grown seedlings. Explants were cultured on MS medium with different conc. of NAA, Kn, IAA and BAP singly or in combinations. Highest number of micro shoots and better plant growth were obtained from these two explants on MS medium supplemented with 0.2 mg/l BAP alone. The regenerated shoots were successfully rooted on MS medium supplemented with 0.5 mg/l NAA. The in vitro raised plantlets were successfully established in soil following the formation of roots with 100% survivability under ex vitro condition. Key words: Feronia limonia; Mass propagation; Node; Shoot tips; Multiple shoot DOI: 10.3329/bjsir.v45i1.5186 Bangladesh J. Sci. Ind. Res. 45(1), 75-78, 2010


2021 ◽  
Author(s):  
Ahmed Almayahi

Abstract There are some limitations in the practical applications of in vitro date palm tissue culture, such as low multiplication efficiency, low rooting rate, and high mortality experienced by in vitro raised plantlets during laboratory to soil transfer. The objective of the present study is to determine the effect of polyamines (putrescine "PUT" and spermidine" SPD") and silver thiosulfate (STS) on enhancing propagation of date palm cv Quntar in vitro. Media supplemented with 75 mg L-1 SPD in combination with 10 mgL-1 STS gave the highest percentage of callus producing buds (83.34%) and average bud formation (16.3) per jar. The addition of PUT and STS to the medium was most effective in root regeneration and the number of roots per shoot, where the best result 91.67% and 6.37 roots per shoot, respectively, were obtained using 75 mgL-1 PUT and 10 mgL-1 STS, resulting in fast-growing plantlets during acclimatization phase, reaching 90% of plant survival. The genetic fidelity assessment of plants derived from micropropagation was confirmed by RAPD analysis. Four operon primers were used, and all of them showed amplified unambiguous (OPA02, OPC-04, OPD-07, and OPE-15). All generated bands were monomorphic and had no variation among the tissue culture-derived plants tested. Accordingly, these results indicate that adding polyamines and silver thiosulfate to the nutrient medium of date palm cv. Quntar is beneficial in improving shoot organogenesis, rooting, and production of genetically stable date palm plants.


Author(s):  
Anastasiia A Lunina ◽  
Dmitry N Kulagin ◽  
Alexander L Vereshchaka

Abstract The shrimp genera Ephyrina, Meningodora and Notostomus have an unusual carapace strengthened with carinae and a half-serrated mandible, which may suggest a possible monophyly of this group. Here we test this hypothesis and present the first phylogenetic study of these genera based on 95 morphological characters (all valid species coded) and six molecular markers (71% of valid species sequenced). Representatives of all genera of Oplophoridae (sister to Acanthephyridae) were outgroups, 32 species belonging to all genera and potentially different clades of Acanthephyridae were ingroups. Both morphological and molecular analyses retrieve trees with similar topology. Our results reject the hypothesis of a clade formed by Ephyrina + Meningodora + Notostomus. We show that Ephyrina and Notostomus are monophyletic, both on morphological and on molecular trees, Meningodora gains support only on morphological trees. Evolutionary traits in the Ephyrina and Meningodora + Notostomus clades are different. Synapomorphies are mostly linked to adaptations to forward motion in Ephyrina (oar-like meri and ischia of pereopods, stempost-like rostrum) and to progressive strengthening of the carapace and pleon in Meningodora and Notostomus (net of sharp carinae). Unusual mandibles evolved in the clades independently and represent convergent adaptations to feeding on gelatinous organisms.


1970 ◽  
Vol 18 (2) ◽  
pp. 187-195 ◽  
Author(s):  
Zhao Guang-jie ◽  
Wang Zhan-bin ◽  
Wang Dan

Effects of different concentrations of 2-ip and IBA in WPM basal medium for Blomidon blueberry in vitro propagation and four different rooting agents at the early stage after transplantation showed that 15 mg/l of 2-ip is the best concentration to induce shoots. For optimum in vitro root formation 10 µM IBA was found to be best and four rooting agents for seedling transplantation according to their effects were No.2>, No.4>, No.3 >, water > and No. 1. Key words: Blomidon, Tissue culture, In vitro regeneration, Rooting agent D.O.I. 10.3329/ptcb.v18i2.3650 Plant Tissue Cult. & Biotech. 18(1): 187-195, 2008 (December)


2013 ◽  
Vol 43 (2) ◽  
pp. 138-146 ◽  
Author(s):  
João Paulo Rodrigues Martins ◽  
Edilson Romais Schimildt ◽  
Rodrigo Sobreira Alexandre ◽  
Breno Régis Santos ◽  
Gizele Cristina Magevski

The tissue culture can contribute to the propagation of several economic species, such as the bromeliads. This research aimed at evaluating the auxins type and concentration in the in vitro and ex vitro rhizogenesis of Neoregelia concentrica bromeliad. N. concentrica shoots were induced in a growth medium with 15.0 µM of 6-benzylaminopurine, for 80 days, followed by sub-cultivation in phytoregulator-free medium, for 45 days. In the in vitro rhizogenesis, the shoots grew in a medium supplemented with indole-3-butyric acid (IBA) or naphthalene-acetic acid (NAA), at the concentrations of 0.0 µM, 1.0 µM, 2.0 µM, 3.0 µM and 4.0 µM. In the ex vitro rhizogenesis, the bases of shoots were immersed, for 60 minutes, in IBA or NAA solutions, at the concentrations of 0.0 µM, 5.0 µM, 10.0 µM and 15.0 µM. After immersion, the shoots were planted in plastic trays with vermiculite. At the end of each rhizogenesis method, the phytotechnical parameters analysis was carried out. For the in vitro rhizogenesis, a higher number of roots were observed when the shoots were cultivated in concentrations higher than 1.0 µM of NAA, when compared to the IBA. However, the rooting rate differed only at 30 days after the in vitro growth, with a higher root induction in the shoots grown with NAA. At 60 days, the rooting rate was higher than 90% and statistically similar in all treatments. In the ex vitro rhizogenesis, a better formation of the rooting system was observed when 5.0 µM of IBA was applied, with higher rooting averages and number of roots.


2005 ◽  
Vol 11 (1) ◽  
Author(s):  
M. G. Fári

The knowledge of tissue culture deserves attention in respect of understanding the development of universal biology. This study intends to contribute to the past of the plant tissue culture by such data of the history of science which have been unprocessed so far. It seems that the life-work of the Hungarian biologist, Dr. Ottó Orsós is a missing and essential link between those early plant hormone researchers and the representatives of the pioneers of tissue culture schools who have contributed substantially to the development of the modern in vitro plant morphogenesis and plant cell biology. Orsós cultured kohlrabi tuber cubes on White culture medium in a sterile manner. This way, he could efficiently direct the in vitro morphogenesis of the kohlrabi, the regeneration of its shoot and root, and the formation and steps to subculture of pure callus tissues in 1938. He supported the correctness of its statements by means of detailed anatomical examinations. Orsós successfully rooted and aclimatized complete regenerated plants. We may as well call the above system — in remembrance of the creators of the original concept — "Haberlandt-Orsós model". Between the publishing of his main paper in 1938 and 2003, a period of 65 years has lapsed. On the occasion of this anniversary, we bow before this forgotten pioneer.


Sign in / Sign up

Export Citation Format

Share Document