CHEMICAL COMPOSITION OF ALFALFA AS RELATED TO DEGREE OF TOLERANCE TO MANGANESE AND ALUMINIUM

1958 ◽  
Vol 38 (2) ◽  
pp. 206-214 ◽  
Author(s):  
G. J. Ouellette ◽  
L. Dessureaux

In an attempt to study the nature of plant tolerance to soil acidity and related factors, a series of investigations was conducted with sand cultures to determine the chemical composition of alfalfa as related to its response to various concentrations of manganese, aluminium and calcium. All clones studied were affected, but to a variable degree, by an excess of manganese and aluminium. They absorbed approximately the same amounts of these elements but considerable differences were noted in their rate of translocation from the roots to the aerial organs. As a result, plants which were the least affected by manganese and aluminium contained smaller amounts of those two elements in their stems and leaves and larger amounts in their roots. Moreover, for a given content of manganese and aluminium in aerial organs, the degree of injury was approximately the same for all clones. More total and water-soluble calcium was found in so-called tolerant than non-tolerant plants. Also, an increase in the calcium concentration of the nutrient culture was effective in reducing manganese toxicity. These results suggest the theory that the rate of uptake of calcium by the plant is one of the factors determining its degree of tolerance to manganese and aluminium.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rasa Zalakeviciute ◽  
Katiuska Alexandrino ◽  
Yves Rybarczyk ◽  
Alexis Debut ◽  
Karla Vizuete ◽  
...  

Abstract Particulate matter (PM) is one of the key pollutants causing health risks worldwide. While the preoccupation for increased concentrations of these particles mainly depends on their sources and thus chemical composition, some regions are yet not well investigated. In this work the composition of chemical elements of atmospheric PM10 (particles with aerodynamic diameters ≤ 10 µm), collected at the urban and suburban sites in high elevation tropical city, were chemically analysed during the dry and wet seasons of 2017–2018. A large fraction (~ 68%) of PM10 composition in Quito, Ecuador is accounted for by water-soluble ions and 16 elements analysed using UV/VIS spectrophotometer and Inductively Coupled Plasma—Optical Emission Spectroscopy (ICP-OES). Hierarchical clustering analysis was performed to study a correlation between the chemical composition of urban pollution and meteorological parameters. The suburban area displays an increase in PM10 concentrations and natural elemental markers during the dry (increased wind intensity, resuspension of soil dust) season. Meanwhile, densely urbanized area shows increased total PM10 concentrations and anthropogenic elemental markers during the wet season, which may point to the worsened combustion and traffic conditions. This might indicate the prevalence of cardiovascular and respiratory problems in motorized areas of the cities in the developing world.


LWT ◽  
2007 ◽  
Vol 40 (2) ◽  
pp. 239-248 ◽  
Author(s):  
Keyvan Dastmalchi ◽  
H.J. Damien Dorman ◽  
Müberra Koşar ◽  
Raimo Hiltunen

2012 ◽  
Vol 12 (21) ◽  
pp. 10239-10255 ◽  
Author(s):  
L. T. Padró ◽  
R. H. Moore ◽  
X. Zhang ◽  
N. Rastogi ◽  
R. J. Weber ◽  
...  

Abstract. Aerosol composition and mixing state near anthropogenic sources can be highly variable and can challenge predictions of cloud condensation nuclei (CCN). The impacts of chemical composition on CCN activation kinetics is also an important, but largely unknown, aspect of cloud droplet formation. Towards this, we present in-situ size-resolved CCN measurements carried out during the 2008 summertime August Mini Intensive Gas and Aerosol Study (AMIGAS) campaign in Atlanta, GA. Aerosol chemical composition was measured by two particle-into-liquid samplers measuring water-soluble inorganic ions and total water-soluble organic carbon. Size-resolved CCN data were collected using the Scanning Mobility CCN Analysis (SMCA) method and were used to obtain characteristic aerosol hygroscopicity distributions, whose breadth reflects the aerosol compositional variability and mixing state. Knowledge of aerosol mixing state is important for accurate predictions of CCN concentrations and that the influence of an externally-mixed, CCN-active aerosol fraction varies with size from 31% for particle diameters less than 40 nm to 93% for accumulation mode aerosol during the day. Assuming size-dependent aerosol mixing state and size-invariant chemical composition decreases the average CCN concentration overprediction (for all but one mixing state and chemical composition scenario considered) from over 190–240% to less than 20%. CCN activity is parameterized using a single hygroscopicity parameter, κ, which averages to 0.16 ± 0.07 for 80 nm particles and exhibits considerable variability (from 0.03 to 0.48) throughout the study period. Particles in the 60–100 nm range exhibited similar hygroscopicity, with a κ range for 60 nm between 0.06–0.076 (mean of 0.18 ± 0.09). Smaller particles (40 nm) had on average greater κ, with a range of 0.20–0.92 (mean of 0.3 ± 0.12). Analysis of the droplet activation kinetics of the aerosol sampled suggests that most of the CCN activate as rapidly as calibration aerosol, suggesting that aerosol composition exhibits a minor (if any) impact on CCN activation kinetics.


2021 ◽  
Vol 316 ◽  
pp. 521-526
Author(s):  
Vladimir A. Nosenko ◽  
Alexander V. Fetisov ◽  
Semen P. Kuznetsov

The article summarizes the results of the of the titanium alloy surface morphology and chemical composition study after grinding with a wheel of cubic boron nitride on a ceramic bond. The titanium alloy was treated using the method of cut-in grinding in the finishing mode using a synthetic water-soluble lubricant-cooling liquid that does not contain mineral oil. The research was carried out using the FEI Versa 3D LoVac electron microscope. Digital photos of the titanium alloy surface at different magnifications are given. Individual objects’ morphology allows us to identify them as wear products of abrasive tools. The chemical composition of the selected objects was studied by local x-ray spectral analysis. CBN crystals are partially or completely pressed into the treated surface and covered with a layer of the treated material. On the surface of CBN crystals, there are chemical elements that are part of the abrasive tool bond.


1973 ◽  
Vol 27 ◽  
pp. 2997-3002 ◽  
Author(s):  
Jens K. Wold ◽  
Tore Midtvedt ◽  
Randi Winsnes ◽  
Petri Pajunen ◽  
Jouko Koskikallio ◽  
...  

2014 ◽  
Vol 14 (4) ◽  
pp. 4787-4826 ◽  
Author(s):  
S. Gilardoni ◽  
P. Massoli ◽  
L. Giulianelli ◽  
M. Rinaldi ◽  
M. Paglione ◽  
...  

Abstract. The interaction of aerosol with atmospheric water affects the processing and wet removal of atmospheric particles. Understanding such interaction is mandatory to improve model description of aerosol lifetime and ageing. We analyzed the aerosol-water interaction at high relative humidity during fog events in the Po Valley, in the framework of the ARPA-ER Supersite project. For the first time in this area, the changes in particle chemical composition caused by fog are discussed along with changes in particle microphysics. During the experiment, 14 fog events were observed. The average mass scavenging efficiency was 70% for nitrate, 68% for ammonium, 61% for sulfate, 50% for organics, and 39% for black carbon. After fog formation, the interstitial aerosol was dominated by particles smaller than 200 nm Dva (vacuum aerodynamic diameter) and enriched in carbonaceous aerosol, mainly black carbon and water insoluble organic aerosol (WIOA). For each fog event, the size segregated scavenging efficiency of nitrate and organic aerosol (OA) was calculated by comparing chemical species size distribution before and after fog formation. For both nitrate and OA, the size segregated scavenging efficiency followed a sigmoidal curve, with values close to zero below 100 nm Dva and close to 1 above 700 nm Dva. OA was able to affect scavenging efficiency of nitrate in particles smaller than 300 nm Dva. A linear correlation between nitrate scavenging and particle hygroscopicity (κ) was observed, indicating that 44–51% of the variability of nitrate scavenging in smaller particles (below 300 nm Dva) was explained by changes in particle chemical composition. The size segregated scavenging curves of OA followed those of nitrate, suggesting that organic scavenging was controlled by mixing with water-soluble species. In particular, functional group composition and OA elemental analysis indicated that more oxidized OA was scavenged more efficiently than less oxidized OA. Nevertheless, the small variability of organic functional group composition during the experiment did not allow us to discriminate the effect of different organic functionalities on OA scavenging.


1958 ◽  
Vol 38 (2) ◽  
pp. 105-115
Author(s):  
W. A. Ehrlich ◽  
R. E. Smith

The analysis of the principal horizons of 11 halomorphic profiles was undertaken in an attempt to ascertain, chiefly, the kind and quantity of soluble salts and exchangeable cations assumed to be the main causative agents in the formation of solonetzic soils in Manitoba. The results showed that water-soluble sodium was equal to or greater in quantity than water-soluble calcium or water-soluble magnesium; that exchangeable calcium followed closely by exchangeable magnesium dominated the exchange complexes; and that exchangeable sodium in excess of 15 per cent of the exchangeable cations was found only in some horizons of the Solonchak, Solonetz and Solodized-Solonetz soils in the Chesterfield Association.


Sign in / Sign up

Export Citation Format

Share Document