INHERITANCE OF RESISTANCE TO ERYSIPHE GRAMINIS F. SP. HORDEI IN BARLEY: I. THE INHERITANCE OF RESISTANCE IN TWO VARIETIES IMMUNE TO RACE 8

1964 ◽  
Vol 44 (3) ◽  
pp. 259-262
Author(s):  
R. Loiselle

The inheritance of resistance to a culture of race 8 of powdery mildew was studied in the resistant barley varieties Ottawa 5069-40 and B294. Ottawa 5069-40 possesses one dominant gene for resistance which is probably the gene from the variety Duplex. B294 possesses two dominant genes for resistance. The three resistance genes are inherited independently. No linkage was detected between the resistance genes and the genes for row number, awn type, and rachilla hair length.

2015 ◽  
Vol 105 (11) ◽  
pp. 1446-1457 ◽  
Author(s):  
Yariv Ben-Naim ◽  
Yigal Cohen

Powdery mildew caused by Podosphaera xanthii is a major disease of watermelon in Israel. In this study, 291 accessions of Citrullus spp. were evaluated for resistance against P. xanthii race 1W. Only eight accessions exhibited high level of resistance. Inheritance of resistance against P. xanthii race 1W was studied by crossing three resistant accession of Citrullus lanatus var. citroides BIU 119, PI 189225, or PI 482312 with the susceptible cultivar ‘Malali’ or ‘Sugar Baby’. Parents, F1, F2, and back cross progenies were evaluated for resistance in growth chambers at the cotyledon stage and the 4-leaf stage and in the field, at the 15-leaf stage. Resistance at the cotyledon stage was controlled by a single, partially dominant gene, whereas at the 4-leaf stage or the 15-leaf stage resistance was controlled by three complimentary, partially dominant genes. Crosses made among these resistant accessions revealed that BIU 119 and PI 189225 carry the same genes for resistance, whereas PI 482312 shares two out of three genes with both BIU 119 and PI 189225. A breeding line with high resistance level and good fruit qualities was developed from BIU 119 × HA5500.


1980 ◽  
Vol 22 (1) ◽  
pp. 27-33 ◽  
Author(s):  
D. E. Harder ◽  
R. I. H. McKenzie ◽  
J. W. Martens

The inheritance of resistance to oat crown rust was studied in three accessions of Avena sterilis L. Accession CAV 4274 originated from Morocco, CAV 4540 from Algeria, and CAV 3695 from Tunisia. Seedling rust tests on F2 backcross families indicated the presence of two dominant genes for crown rust resistance in CAV 4274. One of these, a gene conditioning resistance to most races tested, was linked or allelic to gene Pc-38, and was designated gene Pc-62. The second gene conferred resistance only to one of the six races studied, and was not tested further. In CAV 4540, a single dominant gene, Pc-63 was possibly allelic with Pc-62 and linked or allelic to Pc-38. Genes Pc-62 and 63 are generally similar to Pc-38 in their resistance spectrum, but these three genes are differentiated by races CR 102, CR 103, and CR 107. A single dominant gene in CAV 3695 appeared to be Pc-50.


1962 ◽  
Vol 42 (1) ◽  
pp. 69-77 ◽  
Author(s):  
E. N. Larter ◽  
H. Enns

Four barley varieties, each immune to a Valki-attacking culture of loose smut (designated as race 2), were studied with respect to the inheritance of their resistance. Jet (C.I. 967) and Nigrinudum (C.I. 2222) were each found to possess two independent dominant genes determining resistance. Steudelli (C.I. 2266) proved to be immune to race 2 through the action of a single dominant gene, while resistance of Hillsa (C.I. 1604) was found to be conditioned by two complementary dominant genes. The absence of susceptible F3 families in crosses between Jet, Nigrinudum, and Steudelli indicated that these three varieties have in common a gene or genes for resistance to the race of smut used. The two complementary genes for resistance in Hillsa proved to be distinct from those of the other three varieties under study.The use of genetic analyses of disease resistance based upon classification of F3 families of the backcross to the resistant source is described and the merits of such a method are discussed.


1983 ◽  
Vol 25 (4) ◽  
pp. 329-335 ◽  
Author(s):  
L. S. L. Wong ◽  
R. I. H. McKenzie ◽  
D. E. Harder ◽  
J. W. Martens

The inheritance of resistance to Puccinia coronata, awn development, lemma pubescence, and lemma color were studied in the Avena sterilis accessions CAV 4248, CAV 4656, and CAV 4904. Three independent, partially dominant genes (Pc-64, Pc-65, Pc-66) in CAV 4248, one partially dominant gene (Pc-67) in CAV 4656, and a dominant gene (Pc-68) in CAV 4904 were identified which conferred resistance to P. coronata. Genes Pc-64, Pc-65, Pc-66, Pc-67, and Pc-68 conferred resistance to 13, 8, 6, 12, and 14 races, respectively, of the 14 races of P. coronata tested. Gene Pc-68 conferred resistance to all field isolates of P. coronata collected in Canada in 1981 and was found to be closely linked or allelic to gene Pc-46. Awns and lemma pubescence were inherited monogenically in crosses with all three CAV accessions. Grey lemma color was controlled by one gene in CAV 4248 and by two genes in CAV 4656. Brown lemma color was controlled by one gene, which was closely linked or pleiotropic with the gene for lemma pubescence in CAV 4904. There was no association between crown rust resistance and the three floret characters studied.


2012 ◽  
Vol 65 (2) ◽  
pp. 155-160 ◽  
Author(s):  
Sylwia Okoń ◽  
Krzysztof Kowalczyk

Powdery mildew in common oat is caused by <i>Blumeria graminis</i> DC. f.sp. <i>avenae</i> Em. Marchal. Host-pathogen tests are commonly used to identify and locate resistance genes to powdery mildew in cereals. The aim of the study was to determine the virulence of powdery mildew isolates obtained from powdery mildew populations harvested in Poland and to identify OMR1, OMR2 and OMR3 resistance genes to powdery mildew in F<sub>2</sub> populations of inter-cultivar hybrids of common oat: Bruno × Fuchs, Jumbo × Fuchs and Mostyn × Fuchs. On the basis of the analysis conducted, isolates enabling division of the studied populations into groups of resistant and susceptible plants were selected. M10 and M14 isolates were chosen for the population which was obtained from crossbreeding of ‘Bruno’ with ‘Fuchs’; these isolates demonstrated avirulence to Bruno cultivar containing OMR1 gene. In order to divide population obtained from crossbreeding of ‘Jumbo’ with ‘Fuchs’, M13 and M16 isolates were chosen; they demonstrated avirulence to the cultivar Jumbo containing the OMR2 gene. On the basis of the tests conducted, it was impossible to select isolates characterised by avirulence to the OMR3 gene. In the F2 population of Bruno × Fuchs and Jumbo × Fuchs hybrids, a division was made into resistant and susceptible plants. The obtained results were verified by the <sup>2</sup> test; the proportion in the dispersion matching model was found to be 3 resistant plants: 1 sensitive plant both in the Bruno × Fuchs and Jumbo × Fuchs populations. Such dispersion indicated that the resistance to powdery mildew in the studied cultivars Bruno and Jumbo was conditioned by single dominant genes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Antonín Dreiseitl

Abstract Powdery mildew, a common cereal disease caused by the fungus Blumeria graminis, is a major limiting factor of barley production and genetic resistance is the most appropriate protection against it. To aid the breeding of new cultivars and their marketing, resistance genes can be postulated in homogeneous accessions. Although hybrid cultivars (F1) should be homogeneous, they are often not genetically uniform, especially if more than two genotypes are involved in their seed production or due to undesirable self-pollination, out-crossing and mechanical admixtures. To overcome these problems the accepted method of postulating specific resistance genes based on comparing response type arrays (RTAs) of genetically homogeneous cultivars with RTAs of standard genotypes was substituted by analysing the frequency of response types to clusters of pathogen isolates in segregating F2 generations. This method combines a genetic and phytopathological approach for identifying resistance genes. To assess its applicability six hybrid cultivars were screened and from three to seven with a total of 14 resistance genes were found. Two genes were newly located at the Mla locus and their heritability determined. In addition, three unknown dominant genes were detected. This novel, comprehensive and efficient method to identifying resistance genes in hybrid cultivars can also be applied in other cereals and crops.


1971 ◽  
Vol 13 (2) ◽  
pp. 251-255 ◽  
Author(s):  
G. Fleischmann ◽  
R. I. H. McKenzie ◽  
W. A. Shipton

The inheritance of genes in three collections of Avena sterilis wild oats conferring resistance to races 216, 264, 295, 305, 326, 330, 332, and 446 of crown rust, Puccinia coronata avenae, was investigated. C. I. 8081 from Portugal contained a partially dominant gene, designated Pc47, which conferred resistance to all eight races. CW486 from Tunisia had a dominant gene, designated Pc50, which gave resistance to all races except 295, 326, and 446. F158 from Israel had two dominant genes; one, designated Pc48, conferred resistance to all the races but 305, while the second, designated Pc49, conferred resistance to races 216, 326, 330, 332, and 446. Genes Pc47, Pc48, Pc49, and Pc50 were inherited independently of each other and of those genes previously isolated from A. sterilis.


2010 ◽  
Vol 90 (6) ◽  
pp. 803-807 ◽  
Author(s):  
C. He ◽  
V. Poysa ◽  
K. Yu ◽  
C. Shi

Powdery mildew is a serious disease for greenhouse and field tomatoes in North America. The main objective of this experiment was to study the genetic inheritance of resistance to powdery mildew in tomato hybrid DRW4409 and to identify simple sequence repeat (SSR) markers linked to the resistance gene. Analysis of a genetic population derived from DRW4409 showed that resistance to powdery mildew is controlled by a single dominant gene. Screening 158 SSR loci found that the SSR marker, LEat014, is linked to this gene at a map distance of 8.0 cM. To the best of our knowledge, this is the first report of an SSR linked to the resistance gene in DRW4409. Because of its co-dominant nature, this SSR should be useful to breeders in screening tomato plants for resistance to powdery mildew when DRW4409 is used as the resistance gene source.


1996 ◽  
Vol 93-93 (1-2) ◽  
pp. 48-56 ◽  
Author(s):  
M. Schönfeld ◽  
A. Ragni ◽  
G. Fischbeck ◽  
A. Jahoor

Sign in / Sign up

Export Citation Format

Share Document