Effects of selected conditioners and tillage on the physical quality of a clay loam soil

2003 ◽  
Vol 83 (4) ◽  
pp. 381-393 ◽  
Author(s):  
W. D. Reynolds ◽  
X. M. Yang ◽  
C. F. Drury ◽  
T. Q. Zhang ◽  
C. S. Tan

Field-crop yields are below their genetic and climatic potentials on many fine-textured soils due to low organic carbon content (OC), high bulk density (ρb), low hydraulic conductivity (Ks), insufficient air capacity (AC) and low plant-available water capacity (PAWC). Although soil conditioners derived from municipal, agricultural and industrial wastes are frequently used to improve soils, their effects on overall soil physical quality are still poorly understood. Hence, the objective of this laboratory soil core study was to determine for a Brookston clay loam the effectiveness of masonry sand, greenhouse rockwool waste, yard waste compost and swine manure compost for improving soil physical quality relative to “ideal” levels proposed in the literature, and relative to “benchmark” levels found in the soil under virgin conditions, long-term conventional tillage and long-term no-tillage. The virgin soil produced near-surface (0.05–0.15 m depth) values for ρb(0.88 Mg m-3), AC (0.19 m3m-3) and PAWC (0.22 m3m-3) that fell within the optimal ranges proposed in the literature, while OC (68.2 g C kg-1) was slightly above optimal. The soil under long-term conventional tillage and no-tillage (cornsoybean rotation) produced below-optimal organic carbon content (21.9–22.5 g C kg-1), excessive ρb (1.45–1.47 Mg m-3), insufficient AC (0.06 m3m-3) and low PAWC (0.14–0.19 m3m-3). Conventional tillage also produced below-optimal Ks (10−6 m s-1). Each conditioner could improve one or more of the above parameters, but not all five. Adding sand at 20–100 wt. % improved AC, but caused excessive reductions in OC and PAWC, and excessive increases in ρb and Ks. Greenhouse rockwool waste added at 2.5–10 wt. % improved AC and ρb, but did not improve OC and PAWC. Yard waste compost added at 3.8–20 wt. % improved OC, ρb and PAWC, but did not improve AC. Adding swine manure compost at 3.8–20 wt. % improved OC and ρb, but did not improve AC or PAWC, and decreased Ks. As no single conditioner could optimize all soil physical quality parameters, future studies using combinations of conditioners are proposed. Key words: Soil physical quality, tillage, soil conditioners, clay loam, sand, rockwool, compos

Author(s):  
Camila Jorge Bernabé Ferreira ◽  
Cássio Antonio Tormena ◽  
Eduardo Da Costa Severiano ◽  
Lincoln Zotarelli ◽  
Edner Betioli Júnior

2010 ◽  
Vol 34 (1) ◽  
pp. 211-2178 ◽  
Author(s):  
Fabiana de Souza Pereira ◽  
Itamar Andrioli ◽  
Amauri Nelson Beutler ◽  
Cinara Xavier de Almeida ◽  
Faber de Souza Pereira

The intensive use of land alters the distribution of the pore size which imparts consequences on the soil physical quality. The Least Limiting Water Range (LLWR) allows for the visualization of the effects of management systems upon either the improvement or the degradation of the soil physical quality. The objective of this study was to evaluate the physical quality of a Red Latosol (Oxisol) submited to cover crops in the period prior to the maize crop in a no-tillage and conventional tillage system, using porosity, soil bulk density and the LLWR as attributes. The treatments were: conventional tillage (CT) and a no-tillage system with the following cover crops: sunn hemp (Crotalaria juncea L.) (NS), pearl millet (Pennisetum americanum (L.) Leeke) (NP) and lablab (Dolichos lablab L.) (NL). The experimental design was randomized blocks in subdivided plots with six replications, with the plots being constituted by the treatments and the subplots by the layers analyzed. The no-tillage systems showed higher total porosity and soil organic matter at the 0-0.5 m layer for the CT. The CT did not differ from the NL or NS in relation to macroporosity. The NP showed the greater porosity, while CT and NS presented lower soil bulk density. No < 10 % airing porosity was found for the treatments evaluated, and value for water content where soil aeration is critical (θPA) was found above estimated water content at field capacity (θFC) for all densities. Critical soil bulk density was of 1.36 and 1.43 Mg m-3 for NP and CT, respectively. The LLWR in the no-tillage systems was limited in the upper part by the θFC, and in the bottom part, by the water content from which soil resistance to penetration is limiting (θPR). By means of LLWR it was observed that the soil presented good physical quality.


Soil Systems ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 72
Author(s):  
Mirko Castellini ◽  
Luisa Giglio ◽  
Francesca Modugno

Sampled soil volume is a main experimental factor which must be properly considered to obtain a reliable estimation of soil physical quality (SPQ) and, thus, to obtain credible evaluation of the impact of a conservative-conventional soil management system on the soil air–water relationship. In this investigation, two ring sizes were used to sample two fine textured soils and soil management for durum wheat cultivation, namely, conventional tillage (CT) and no-tillage (NT). The soil water retention was determined; soil bulk density (BD), macroporosity (MACpor), air capacity (AC), and relative field capacity (RFC) were estimated to assess the soil physical quality indicators, in agreement with the guidelines suggested in the literature. The main results showed that the sampling volume of the soil affected the soil water retention estimation (θ) and, consequently, affected the SPQ estimation, given that (i) higher θ values (by a factor 1.11 as mean) were generally obtained with a large diameter than a small one; these differences decreased (by a factor 1.20, 1.10 and 1.03) as the imposed pressure head value decreased (respectively, at h = 0, −10 and −100 cm); (ii) among SPQ indicators considered, soil volume samples seemed to impact the BD–RFC estimation more than AC–MACpor, as statistical differences were identified only in the former case; iii) NT soil was significantly more compact, and had lower macroporosity or air capacity, when compared with CT; at the time of sampling, the mean SPQ was always poor for AC–RFC, or optimal for BD, regardless of soil management, and it was intermediate or poor when the MACpor was evaluated under CT or NT. This study contributes toward understanding the impact of soil management on soil physical properties in Mediterranean agro-environments.


2014 ◽  
Vol 38 (1) ◽  
pp. 288-298 ◽  
Author(s):  
Moacir Tuzzin de Moraes ◽  
Henrique Debiasi ◽  
Reimar Carlesso ◽  
Julio Cezar Franchini ◽  
Vanderlei Rodrigues da Silva

Soil penetration resistance is an important indicator of soil physical quality and the critical limit of 2 MPa has been widely used to characterize the soil physical quality, in both no-tillage and conventional systems. The aim of this study was to quantify the influence of different tillage and cropping systems on the soil penetration resistance in a Rhodic Eutrudox. The experiment was carried out in a 5 × 2 factorial, completely randomized block design (tillage systems vs cropping systems), with four replications. The tillage systems consisted of: conventional tillage disk harrow; minimum tillage with annual chiseling; minimum tillage with chiseling every three years; no-tillage for 11 consecutive years; and no-tillage for 24 consecutive years. The factor cropping systems was represented by: crop rotation and crop succession. The soil penetration resistance (SPR) was determined in 20 soil samples per treatment and layer (0.0-0.10; 0.10-0.20 and 0.20-0.30 m) for each soil matric potential: -6, -10, -33, -100, -500 kPa. The SPR was determined at a volumetric soil water content equivalent to the fraction of plant-available water of 0.7. There were no differences of soil penetration resistance between the two cropping systems. Differences in soil penetration resistance among tillage systems were related to the matric potential at which the samples were equilibrated. The critical SPR limit of 2 MPa normally used for conventional tillage should be maintained. However, this value of 2 MPa is inappropriate for the physical quality characterization of Rhodic Eutrudox under no-tillage and/or minimum tillage with chiseling. Regardless of the cropping systems, the critical SPR limit should be raised to 3 MPa for minimum tillage with chiseling and to 3.5 MPa for no-tillage.


2021 ◽  
Author(s):  
Márton Dencső ◽  
Ágota Horel ◽  
Zsófia Bakacsi ◽  
Eszter Tóth

&lt;p&gt;Tillage practices influence soil CO&lt;sub&gt;2&lt;/sub&gt; emissions, hence many research investigate the long-term effects of conservation and conventional tillage methods e.g. ploughing and no-tillage on soil greenhouse gas emission.&lt;/p&gt;&lt;p&gt;The experiment site is an 18-years-old long-term tillage trial established on chernozem soil. During 2020, we took weekly CO&lt;sub&gt;2 &lt;/sub&gt;emission measurements in the mouldboard ploughing (MP), no-tillage (NT), and shallow cultivation (SC) treatments Tillage depth was 26-30 cm, 12-16 cm and 0 cm in the cases of MP, SC and NT respectively. The experiment was under wither oat cultivation.&lt;/p&gt;&lt;p&gt;We investigated the similarity in the CO&lt;sub&gt;2&lt;/sub&gt; emission trends of SC to MP or NT treatments. Besides CO&lt;sub&gt;2&lt;/sub&gt; emission measurements, we also monitored environmental parameters such as soil temperature (Ts) and soil water content (SWC) in each treatment.&lt;/p&gt;&lt;p&gt;During the investigated year (2020 January - December) SC had higher annual mean CO&lt;sub&gt;2&lt;/sub&gt; emission (0.115&amp;#177;0.083 mg m&lt;sup&gt;-2&lt;/sup&gt; s&lt;sup&gt;-1&lt;/sup&gt;) compared to MP (0.099&amp;#177;0.089 mg m&lt;sup&gt;-2&lt;/sup&gt; s&lt;sup&gt;-1&lt;/sup&gt;) and lower compared to NT (0.119&amp;#177;0.100 mg m&lt;sup&gt;-2&lt;/sup&gt; s&lt;sup&gt;-1&lt;/sup&gt;). The difference of the CO&lt;sub&gt;2&lt;/sub&gt; emissions was significant between SC and MP (p&lt;0.05); however, it was not significant between SC and NT (p&gt;0.05) treatments. The Ts dependency of CO&lt;sub&gt;2&lt;/sub&gt; emission was moderate in all treatments. CO&lt;sub&gt;2&lt;/sub&gt; emissions were moderately depended on SWC in MP and SC, and there was no correlation between these parameters in NT.&lt;/p&gt;&lt;p&gt;The annual mean CO&lt;sub&gt;2&lt;/sub&gt; emission of the SC treatment was more similar to the NT, than to the MP treatment.&lt;/p&gt;


2014 ◽  
Vol 60 (No. 7) ◽  
pp. 309-313 ◽  
Author(s):  
Chen XW ◽  
Liang AZ ◽  
Jia SX ◽  
Zhang XP ◽  
Wei SC

Soil management is aimed at the maintenance of optimal soil physical quality for crop production. In order to explore the effects of tillage practices on soil physical properties, a study was conducted to compare the effects of no tillage (NT), moldboard plow (MP) and ridge tillage (RT) on soil bulk density (BD), soil penetration resistance (SPR), soil water content (SWC), soil macroporosity (MAC) and soil air-filled porosity (AFP) in Northeast China. Results showed that both NT and RT led to significant BD increment than MP at 0&ndash;20 cm (P &lt; 0.05). Compared with MP, NT and RT increased SPR at the depths of 2.5&ndash;17.5 cm (P &lt; 0.05). SWC of 0&ndash;10 cm layer was significantly higher in NT and RT than MP soils (P &lt; 0.05). NT showed a significantly lower MAC than MP and RT at 0&ndash;20 cm soil depths (P &lt; 0.05). All AFP values were above the limit of 0.10 cm<sup>3</sup>/cm<sup>3</sup> under all tillage treatments. RT improved the soil physical quality as evidenced by decreased BD and SPR, and increased SWC, MAC and AFP relative to NT.


Weed Science ◽  
1991 ◽  
Vol 39 (2) ◽  
pp. 186-194 ◽  
Author(s):  
John Cardina ◽  
Emilie Regnier ◽  
Kent Harrison

Soils from long-term tillage plots at three locations in Ohio were sampled to determine composition and size of weed seed banks following 25 yr of continuous no-tillage, minimum-tillage, or conventional-tillage corn production. The same herbicide was applied across tillage treatments within each year and an untreated permanent grass sod was sampled for comparison. Seed numbers to a 15-cm depth were highest in the no-tillage treatment in the Crosby silt loam (77 800 m–2) and Wooster silt loam (8400 m–2) soils and in the grass sod (7400 m–2) in a Hoytville silty clay loam soil. Lowest seed numbers were found in conventional-tillage plots in the Wooster soil (400 m–2) and in minimum-tillage plots in the Crosby (2200 m–2) and Hoytville (400 m–2) soils. Concentration of seeds decreased with depth but the effect of tillage on seed depth was not consistent among soil types. Number of weed species was highest in permanent grass sod (10 to 18) and decreased as soil disturbance increased; weed populations were lowest in conventional tillage in the Hoytville soil. Common lambsquarters, pigweeds, and fall panicum were the most commonly found seeds in all soils. Diversity indices indicated that increased soil disturbance resulted in a decrease in species diversity. Weed populations the summer following soil sampling included common lambsquarters, pigweeds, fall panicum, and several species not detected in the seed bank.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3156
Author(s):  
Felipe Bonini da Luz ◽  
Martha Lustosa Carvalho ◽  
Daniel Aquino de Borba ◽  
Bruna Emanuele Schiebelbein ◽  
Renato Paiva de Lima ◽  
...  

Brazil is the world’s largest sugarcane producer with projections for expanding the current area by 30% in the coming years, mainly in areas previously occupied by pastures. We assess soil water changes induced by land-use change (LUC) for sugarcane expansion in the central-south region of Brazil. For that purpose, soil samples were collected in a typical LUC sequence (native vegetation–pasture–sugarcane) in two contrasting soil textures (i.e., sandy and clayey). Soil hydro-physical properties such as pores size distribution, bulk density, soil water content, water tension, and drainage time at field capacity, plant-available water, and S-index were analyzed. Our data showed that long-term LUC from native vegetation to extensive pasture induced severe degradation in soil physical quality and soil water dynamics. However, conventional tillage used during conversion from pasture to sugarcane did not cause additional degradation on soil structure and soil water dynamics. Over time, sugarcane cultivation slightly impaired soil water and physical conditions, but only in the 10–20 cm layer in both soils. Therefore, we highlight that sustainable management practices to enhance soil physical quality and water dynamics in sugarcane fields are needed to prevent limiting conditions to plant growth and contribute to delivering other ecosystem services.


2008 ◽  
Vol 65 (1) ◽  
pp. 56-60 ◽  
Author(s):  
Cássio Antonio Tormena ◽  
Álvaro Pires da Silva ◽  
Silvia Del Carmen Imhoff ◽  
Anthony Roger Dexter

Soil physical quality is fundamental for the sustainability of agro ecosystems. Soil physical quality assessment must be developed using parameters that describe physical behavior. S, a new soil physical parameter has recently been introduced for assessing the soil physical quality. A good soil physical quality has been associated with values of S > 0.035 in soils from temperate climates. However, S has not been evaluated in tropical soils yet. Therefore we tested the hypothesis that S is a reliable soil physical quality indicator of a Typic Hapludox cropped with maize under no-tillage (NT) and conventional tillage (CT). Undisturbed samples were collected from each tillage system in the row and interrow positions. Soil bulk density was determined in the samples and the S parameter was calculated using a pedotransfer function from the same samples. The parameter S was able to differentiate tillage and position with S NT < S CT independent of the row and interrow sampling positions. Higher S values were verified in row position than in the interrow in both tillage systems. With the use of a pedotransfer function it was also possible to establish a negative relationship between S and soil compaction. The results confirmed our hypothesis and suggest that further studies should be carried out to evaluate S in other tropical soils and management systems.


Sign in / Sign up

Export Citation Format

Share Document