Microbial biomass respiration response to added carbon and nitrogen as an indicator of nitrogen availability in forest soils

1998 ◽  
Vol 78 (4) ◽  
pp. 607-610 ◽  
Author(s):  
William Au ◽  
James W. Fyles ◽  
B. Côté

The relationship between a microbial biomass respiration response to added C and N (NIR) and N mineralized in buried-bags in the field was examined. Significant negative correlations were found between organic horizon NIR values and the amount of mineralized N measured at various times, however no significant correlations were found in the mineral horizon. These results suggest that NIR has potential for use as a physiological indicator of forest floor N availability. Key words: Microbial biomass, respiration, SIR, N mineralization

2009 ◽  
Vol 41 (8) ◽  
pp. 1605-1611 ◽  
Author(s):  
Jeff S. Coyle ◽  
Paul Dijkstra ◽  
Richard R. Doucett ◽  
Egbert Schwartz ◽  
Stephen C. Hart ◽  
...  

Soil Research ◽  
1993 ◽  
Vol 31 (5) ◽  
pp. 611 ◽  
Author(s):  
FA Robertson ◽  
RJK Myers ◽  
PG Saffigna

Availability of N in the clay soils of the brigalow region of Queensland declines rapidly under sown pasture, but under continuous cultivation and cropping, it remains high enough to supply the needs of cereal crops for at least 20 years. The aim of this work was to determine whether the low availability of N under pasture was due to low microbial activity or to rapid re-immobilization of mineralized N. Microbial biomass C and N (0-28 cm) were 420 and 68 �g g-1 respectively in pasture soil but only 214 and 41 �g g-1 respectively in cultivated soil. Pasture soils respired more CO2 (Cresp) and mineralized less N (Nmin) than cultivated soils (219 and 93 �g C g-1 and 3.1 and 5.9 �g N g-1 respectively) during 10-day incubations over 2 years. Increased Crop under pasture was due to an increase in the amount rather than the specific activity of the microbial biomass. The smaller Nmin in grassland soils was due to more rapid immobilization rather than reduced gross mineralization of N, as the ratio Cresp : Nmin was larger and the ratio Nmin :biomass N was smaller in the grassland than in the cultivated soil. On prolonged incubation. with progressive loss of CO2 through respiration, Nmin increased and N immobilization decreased in the grassland soils. Prolonged incubation of the cultivated soils reduced Nmin because of C limitation. The above patterns of C and N mineralization in the grassland and cultivated soils helped to explain the differences in N availability in the two systems.


2006 ◽  
Vol 57 (4) ◽  
pp. 468-475 ◽  
Author(s):  
P. Dijkstra ◽  
O. V. Menyailo ◽  
R. R. Doucett ◽  
S. C. Hart ◽  
E. Schwartz ◽  
...  

2009 ◽  
Vol 55 (9) ◽  
pp. 1089-1095 ◽  
Author(s):  
S. M. Ndaw ◽  
A. C. Gama-Rodrigues ◽  
E. F. Gama-Rodrigues ◽  
K. R.N. Sales ◽  
A. S. Rosado

Microbial populations are primarily responsible for the decomposition of organic residues, the nutrients cycle, and the flow of energy inside of soil. The present study was undertaken to link soil microbiological and soil biochemical parameters with soil- and litter-quality conditions in the surface layer from 5 sites differing in plant cover, in stand age, and in land-use history. The aim was to see how strongly these differences affect the soil microbial attributes and to identify how microbiological processes and structures can be influenced by soil and litter quality. Soil and litter samples were collected from 5 sites according to different land use: preserved forest, nonpreserved forest, secondary forest, pasture, and eucalyptus plantation. Soil and litter microbial biomass and activity were analysed and DNA was extracted from soil. The DNA concentrations and soil microbial C and N correlated positively and significantly, suggesting that these are decisive nutrients for microbial growth and time required for microbial biomass renewal. The litter microbial biomass represented a source of C and N higher than soil microbial biomass and can be an important layer to contribute to tropical soil with low C and N availability. The litter quality influenced the litter and soil microbial biomass and activity and the soil bacterial diversity. The chemical and nutritional quality of the litter influenced the structure and microbial community composition in the eucalyptus plantation.


1993 ◽  
Vol 43 (2) ◽  
pp. 161-167 ◽  
Author(s):  
M. Díaz-Raviña ◽  
M.J. Acea ◽  
T. Carballas

1999 ◽  
Vol 79 (3) ◽  
pp. 427-429 ◽  
Author(s):  
D. Curtin ◽  
H. Steppuhn ◽  
C. A. Campbell ◽  
V. O. Biederbeck

This study was undertaken to characterize the response of organic matter mineralization to soluble electrolyte concentration. We added salts (either KCl or KH2PO4) to a non-saline Black Chernozem at rates of 0 to 64 mmol kg−1 and measured the amounts of C and N mineralized in a 40 d incubation (21 °C and field capacity). Precipitation of calcium phosphate in KH2PO4-treated soil resulted in electrical conductivity (EC), measured in a 1:2 soil:water extract, being lower than in KCl-treated soil. Dissolved organic C (DOC) was increased (up to twofold) by KH2PO4 addition but KCl had little effect. The relationship between C mineralization and EC appeared to be independent of salt type. Mineralization decreased sharply (by 50%) when EC increased from 0.5 dS m−1 (check value) to 1.3 dS m−1. Inhibition of nitrification was not detected until EC increased to about 2 dS m–1. Key words: Mineralization, organic matter, salinity, chloride, sulfate


Sign in / Sign up

Export Citation Format

Share Document