scholarly journals Volume Reduction and Stabilization of Radioactive Waste Incineration Ash

2006 ◽  
Vol 53 (4) ◽  
pp. 171-177
Author(s):  
Hidemi KOYAMA ◽  
Masayuki KOBAYASHI ◽  
Masayuki HORIO
2006 ◽  
Vol 985 ◽  
Author(s):  
Albert Aloy ◽  
Alexander Strelnikov ◽  
Vyacheslav Essimantovskiy

AbstractSeparated liquid highâlevel radioactive waste (HLW) fractions, in particular, about 100 l of 137Cs strip product with activity up to ∼ 100 Ci/l (3.7 TBq/l) have been produced during the development and testing of partitioning technology and temporary stored at “V.G. Khlopin Radium Institute” (SaintâPetersburg, Russia). The benchâscale experimental unit designed for operation in the hot cell was developed for 137Cs strip product solidification with using of alumina silicate porous inorganic material (PIM) called Gubka.Conditions of saturation, drying and calcinations of the salts into Gubka pores were optimized and the operations under remote control regime were executed during tests with using of simulated strip product doped with 137Cs. The volume reduction coefficients were equal by a factor of 3.2â3.9 and 137Cs discharge into offâgas system was not detected. 137Cs leach rates from Gubka blocks after calcination at 800 °C were 1.0â1.5*10-3 g/m2*day.


Author(s):  
S. A. Dmitriev ◽  
A. P. Varlakov ◽  
O. A. Gorbunova ◽  
A. E. Arustamov ◽  
A. S. Barinov

It is known that cement minerals hydration is accompanied with heat emission. Heat of hardening influences formation of a cement compound structure and its properties. It is important to reduce the heat quantity at continuous cementation of waste and filling of compartments of a repository or containers by a cement grout. For reduction of heating, it is necessary to use cement of mineral additives (fuel ashes, slag and hydraulic silica). Properties of ashes after domestic waste incineration can be similar to ones of fly fuel ashes. However, ash after domestic waste incineration is toxic industrial waste as it contains toxic elements (As, Cd, Hg, Pb, Sb, Zn). Utilization of secondary waste (slag and ash) of combustion plants is an important environmental approach to solving cities’ issues. Results of the research have shown that ashes of combustion plants can be used for radioactive waste conditioning. Coprocessing of toxic and radioactive waste is ecologically and economically effective. At SIA “Radon”, experimental batches of cement compositions are used for cementation of oil containing waste.


Author(s):  
Jan Deckers ◽  
Paul Luycx

Abstract Since the very beginning of nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. An experimental furnace “Evence Coppée” was built in 1960 for treatment of LLW produced by the Belgian Research Centre (CEN.SCK). Regulatory this furnace has been modified, improved and equipped with additional installations to obtain better combustion conditions and a more efficient gas cleaning system. Based on the 35 years of experience gained by the operation of the “Evence Coppée”, a new industrial nuclear incineration installation was set into operation in May 1995, as a part of the Belgian Centralised Treatment/Conditioning Facility CILVA. Up to the end of 2000, the CILVA incinerator has burnt 703 tons of solid waste and 343 tons of liquid waste. This paper describes the type of waste and the allowable radioactivity, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the operation experience, capacity, volume reduction, chemical and radiological emissions and maintenance. The most important changes which improved safety, reliability and capacity are also mentioned. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialised in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste.


2013 ◽  
Vol 2013.23 (0) ◽  
pp. 126-129
Author(s):  
Shunsuke Nakamura ◽  
Fumitake Takahashi ◽  
Kunio Yoshikawa ◽  
Hiroshi Ogasawara ◽  
Kazuhiro Sakamaki

Author(s):  
Jan Deckers ◽  
Ludo Mols

Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste.


Sign in / Sign up

Export Citation Format

Share Document