scholarly journals Effect of Metallic Binder Composition on Microstructure and Hardness of (W,Ti)C Cemented Carbides

2007 ◽  
Vol 14 (3) ◽  
pp. 208-214 ◽  
Author(s):  
Walid M. Daoush ◽  
Kyong-H. Lee ◽  
Hee-S. Park ◽  
Jong-J. Jang ◽  
Soon-H. Hong
2021 ◽  
Vol 12 ◽  
pp. 1747-1754
Author(s):  
Yingbiao Peng ◽  
Tao Li ◽  
Jianzhan Long ◽  
Haohan Li ◽  
Bizhi Lu ◽  
...  

2015 ◽  
Vol 98 (11) ◽  
pp. 3596-3601 ◽  
Author(s):  
Maxime Pellan ◽  
Sabine Lay ◽  
Jean-Michel Missiaen ◽  
Susanne Norgren ◽  
Jenny Angseryd ◽  
...  

2020 ◽  
Vol 405 ◽  
pp. 402-407
Author(s):  
Marek Tarraste ◽  
Jakob Kübarsepp ◽  
Kristjan Juhani ◽  
Märt Kolnes ◽  
Mart Viljus ◽  
...  

The economic, environmental and healthcare aspects are pushing cemented carbide industry to reduce or even avoid the usage of conventional binder metals – nickel and cobalt. Commonly, austenitic Fe-Ni alloys have been preferred choice for substituting Co. Similar to Ni, manganese acts as austenite stabilizer and studies have shown that Fe-Mn alloys offer alternative binder metal to Co and Ni in cemented tungsten carbides. In addition, Fe-Mn as a binder potentially offers improved wear resistance due to the well-known wear properties of Fe-Mn-C steels. Addition of chromium to the binder composition increases corrosion performance of composite. Cemented carbides bonded with austenitic FeCrNi binder have demonstrated promising performance. In present work the possibility of achieving austenitic binder phase through substitution of nickel by manganese as an austenite stabilizer is investigated. Structure formation, phase composition and mechanical performance of WC-FeMn and WC-FeCrMn cemented carbides are discussed.


2017 ◽  
Vol 371 ◽  
pp. 78-85 ◽  
Author(s):  
Fabio Miranda ◽  
Daniel Rodrigues ◽  
Francisco Yastami Nakamoto ◽  
Carlos Frajuca ◽  
Givanildo Alves dos Santos ◽  
...  

Tungsten carbide (WC) based cemented carbides, also called hardmetals, are a family of composite materials consisting of carbide ceramic particles embedded in a metallic binder. They are classified as metal matrix composites (MMCs) because the metallic binder is the matrix that holds the bulk material together [1]. WC based composites are used in applications where a good combination of hardness and toughness are necessary [2]. It is usual to add more components to tailor the microstructure of the WC-(Co, Ni) system. The hardness for the cemented carbides based on nickel, increases significantly because of the addition of reinforcements like SiC nanowhisker [3]. In this work, the SiC was considered as an additional component for the composite WC-8(Co, Ni). Four mixtures were prepared with SiC contents ranging from 0 to 3.0 wt%. These mixtures were pressed (200 MPa) and green samples with 25.2 mm of diameter and 40 g were produced. Sintering was carried out in Sinter-HIP furnace (20 bar). Two sintering temperatures were investigated, i.e. 1380 and 1420oC, and the sintering time considered was 60 minutes. The relative density, hardness, linear and volumetric shrinkage were determined. Microstructural evaluation was investigated by optical microscopy and scanning electron microscopy (SEM-FEG). The results showed that the addition of SiC promoted higher densification and grain size growth. The hardness was higher for samples with SiC, so solid solution hardening of the binder was more effective than WC grain size growth.


Author(s):  
Tomas Soria Biurrun ◽  
Jazmina Navarrete Cuadrado ◽  
Unai Galech Napal ◽  
Belen Lopez Ezquerra ◽  
Lorena Lozada Cabezas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document