Witts Theorem for Quadratic Forms Over Non-Dyadic Discrete Valuation Rings

1977 ◽  
Vol 29 (5) ◽  
pp. 928-936
Author(s):  
David Mordecai Cohen

Let R be a discrete valuation ring, with maximal ideal pR, such that ½ ϵ R. Let L be a finitely generated R-module and B : L × L → R a non-degenerate symmetric bilinear form. The module L is called a quadratic module. For notational convenience we shall write xy = B(x, y). Let O(L) be the group of isometries, i.e. all R-linear isomorphisms φ : L → L such that B((φ(x), (φ(y)) = B(x, y).

2019 ◽  
Vol 56 (2) ◽  
pp. 260-266
Author(s):  
Mohamed E. Charkani ◽  
Abdulaziz Deajim

Abstract Let R be a discrete valuation ring, its nonzero prime ideal, P ∈R[X] a monic irreducible polynomial, and K the quotient field of R. We give in this paper a lower bound for the -adic valuation of the index of P over R in terms of the degrees of the monic irreducible factors of the reduction of P modulo . By localization, the same result holds true over Dedekind rings. As an important immediate application, when the lower bound is greater than zero, we conclude that no root of P generates a power basis for the integral closure of R in the field extension of K defined by P.


2005 ◽  
Vol 15 (05n06) ◽  
pp. 997-1012 ◽  
Author(s):  
V. V. KIRICHENKO ◽  
A. V. ZELENSKY ◽  
V. N. ZHURAVLEV

Exponent matrices appear in the theory of tiled orders over a discrete valuation ring. Many properties of such an order and its quiver are fully determined by its exponent matrix. We prove that an arbitrary strongly connected simply laced quiver with a loop in every vertex is realized as the quiver of a reduced exponent matrix. The relations between exponent matrices and finite posets, Markov chains, and doubly stochastic matrices are discussed.


2017 ◽  
Vol 16 (10) ◽  
pp. 1750198 ◽  
Author(s):  
Anuj Jakhar ◽  
Bablesh Jhorar ◽  
Sudesh K. Khanduja ◽  
Neeraj Sangwan

Let [Formula: see text] be a discrete valuation ring with maximal ideal [Formula: see text] and [Formula: see text] be the integral closure of [Formula: see text] in a finite separable extension [Formula: see text] of [Formula: see text]. For a maximal ideal [Formula: see text] of [Formula: see text], let [Formula: see text] denote respectively the valuation rings of the completions of [Formula: see text] with respect to [Formula: see text]. The discriminant satisfies a basic equality which says that [Formula: see text]. In this paper, we extend the above equality on replacing [Formula: see text] by the valuation ring of a Krull valuation of arbitrary rank and completion by henselization. In the course of proof, we prove a generalization of the well-known weak Approximation Theorem which is of independent interest as well.


1989 ◽  
Vol 32 (2) ◽  
pp. 166-168 ◽  
Author(s):  
Christian Gottlieb

AbstractA condensed domain is an integral domain such that IJ = {xy : x ∊ I, y ∊ J } holds for each pair I, J of ideals. We prove that, under suitable conditions, a subring of a discrete valuation ring is condensed if and only if it contains an element of value 2. We also define the concept strongly condensed.


Author(s):  
Phùng Hô Hai ◽  
João Pedro dos Santos

Abstract In the first part of this work [ 12], we studied affine group schemes over a discrete valuation ring (DVR) by means of Neron blowups. We also showed how to apply these findings to throw light on the group schemes coming from Tannakian categories of $\mathcal{D}$-modules. In the present work, we follow up this theme. We show that a certain class of affine group schemes of “infinite type,” Neron blowups of formal subgroups, are quite typical. We also explain how these group schemes appear naturally in Tannakian categories of $\mathcal{D}$-modules. To conclude, we isolate a Tannakian property of affine group schemes, named prudence, which allows one to verify if the underlying ring of functions is a free module over the base ring. This is then successfully applied to obtain a general result on the structure of differential Galois groups over complete DVRs.


1987 ◽  
Vol 52 (1) ◽  
pp. 116-128 ◽  
Author(s):  
M. A. Dickmann

Cherlin and Dickmann [2] proved that the theory RCVR of real closed (valuation) rings admits quantifier-elimination (q.e.) in the language ℒ = {+, −, ·, 0, 1, <, ∣} for ordered rings augmented by the divisibility relation “∣”. The purpose of this paper is to prove a form of converse of this result:Theorem. Let T be a theory of ordered commutative domains (which are not fields), formulated in the language ℒ. In addition we assume that:(1) The symbol “∣” is interpreted as the honest divisibility relation: (2) The following divisibility property holds in T:If T admits q.e. in ℒ, then T = RCVR.We do not know at present whether the restriction imposed by condition (2) can be weakened.The divisibility property (DP) has been considered in the context of ordered valued fields; see [4] for example. It also appears in [2], and has been further studied in Becker [1] from the point of view of model theory. Ordered domains in which (DP) holds are called in [1] convexly ordered valuation rings, for reasons which the proposition below makes clear. The following summarizes the basic properties of these rings:Proposition I [2, Lemma 4]. (1) Let A be a linearly ordered commutative domain. The following are equivalent:(a) A is a convexly ordered valuation ring.(b) Every ideal (or, equivalently, principal ideal) is convex in A.(c) A is a valuation ring convex in its field of fractions quot(A).(d) A is a valuation ring and its maximal ideal MA is convex (in A or, equivalently, in quot (A)).(e) A is a valuation ring and its maximal ideal is bounded by ± 1.


2018 ◽  
Vol 17 (08) ◽  
pp. 1850160 ◽  
Author(s):  
Mark W. Rogers ◽  
Cameron Wickham

We provide a minimal set of generators for the ideal of polynomials in [Formula: see text] that map the maximal ideal [Formula: see text] into one of its powers [Formula: see text], where [Formula: see text] is a discrete valuation ring with a finite residue field. We use this to provide a minimal set of generators for the ideal of polynomials in [Formula: see text] that send [Formula: see text] to zero, where [Formula: see text] is a finite commutative local principal ideal ring.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 744
Author(s):  
Andrei Bura ◽  
Qijun He ◽  
Christian Reidys

An RNA bi-structure is a pair of RNA secondary structures that are considered as arc-diagrams. We present a novel weighted homology theory for RNA bi-structures, which was obtained through the intersections of loops. The weighted homology of the intersection complex X features a new boundary operator and is formulated over a discrete valuation ring, R. We establish basic properties of the weighted complex and show how to deform it in order to eliminate any 3-simplices. We connect the simplicial homology, Hi(X), and weighted homology, Hi,R(X), in two ways: first, via chain maps, and second, via the relative homology. We compute H0,R(X) by means of a recursive contraction procedure on a weighted spanning tree and H1,R(X) via an inflation map, by which the simplicial homology of the 1-skeleton allows us to determine the weighted homology H1,R(X). The homology module H2,R(X) is naturally obtained from H2(X) via chain maps. Furthermore, we show that all weighted homology modules Hi,R(X) are trivial for i>2. The invariant factors of our structure theorems, as well as the weighted Whitehead moves facilitating the removal of filled tetrahedra, are given a combinatorial interpretation. The weighted homology of bi-structures augments the simplicial counterpart by introducing novel torsion submodules and preserving the free submodules that appear in the simplicial homology.


1981 ◽  
Vol 33 (1) ◽  
pp. 116-128 ◽  
Author(s):  
Hiroyuki Ishibashi

Let be a valuation ring with unit element, i.e., is a commutative ring such that for any a and b in , either a divides b or b divides a. We assume 2 is a unit of . V is an n-ary nonsingular quadratic module over , O(V) or On(V) is the orthogonal group on V, and S is the set of symmetries in O(V). We define l(σ) to be the minimal number of factors in the expression of a of O(V) as a product of symmetries on V. For the case where is a field, l(σ) has been determined by P. Scherk [6] and J. Dieudonné [1]. In [3] I have generalized the results of Scherk to orthogonal groups over valuation domains. In the present paper I generalize my results of [3] to orthogonal groups over valuation rings.Since is a valuation ring, it is a local ring with the maximal ideal A which consists of all nonunits of .


Sign in / Sign up

Export Citation Format

Share Document