Absolute Continuity of Wasserstein Barycenters Over Alexandrov Spaces

2017 ◽  
Vol 69 (5) ◽  
pp. 1087-1108
Author(s):  
Yin Jiang

AbstractIn this paper, we prove that on a compact, n-dimensional Alexandrov space with curvature at least −1, the Wasserstein barycenter of Borel probability measures μ1 ,… , μm is absolutely continuous with respect to the n-dimensional Hausdorff measure if one of them is.

Author(s):  
Damian Dąbrowski

Abstract A Radon measure $\mu $ is $n$-rectifiable if it is absolutely continuous with respect to $n$-dimensional Hausdorff measure and $\mu $-almost all of ${\operatorname{supp}}\mu $ can be covered by Lipschitz images of $\mathbb{R}^n$. In this paper, we give a necessary condition for rectifiability in terms of the so-called $\alpha _2$ numbers — coefficients quantifying flatness using Wasserstein distance $W_2$. In a recent article, we showed that the same condition is also sufficient for rectifiability, and so we get a new characterization of rectifiable measures.


Author(s):  
Hong Chang Ji

Abstract Given two nondegenerate Borel probability measures $\mu$ and $\nu$ on ${\mathbb{R}}_{+}=[0,\infty )$, we prove that their free multiplicative convolution $\mu \boxtimes \nu$ has zero singular continuous part and its absolutely continuous part has a density bounded by $x^{-1}$. When $\mu$ and $\nu$ are compactly supported Jacobi measures on $(0,\infty )$ having power law behavior with exponents in $(-1,1)$, we prove that $\mu \boxtimes \nu$ is another Jacobi measure whose density has square root decay at the edges of its support.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 255
Author(s):  
Dan Lascu ◽  
Gabriela Ileana Sebe

We investigate the efficiency of several types of continued fraction expansions of a number in the unit interval using a generalization of Lochs theorem from 1964. Thus, we aim to compare the efficiency by describing the rate at which the digits of one number-theoretic expansion determine those of another. We study Chan’s continued fractions, θ-expansions, N-continued fractions, and Rényi-type continued fractions. A central role in fulfilling our goal is played by the entropy of the absolutely continuous invariant probability measures of the associated dynamical systems.


Author(s):  
Balázs Bárány ◽  
Károly Simon ◽  
István Kolossváry ◽  
Michał Rams

This paper considers self-conformal iterated function systems (IFSs) on the real line whose first level cylinders overlap. In the space of self-conformal IFSs, we show that generically (in topological sense) if the attractor of such a system has Hausdorff dimension less than 1 then it has zero appropriate dimensional Hausdorff measure and its Assouad dimension is equal to 1. Our main contribution is in showing that if the cylinders intersect then the IFS generically does not satisfy the weak separation property and hence, we may apply a recent result of Angelevska, Käenmäki and Troscheit. This phenomenon holds for transversal families (in particular for the translation family) typically, in the self-similar case, in both topological and in measure theoretical sense, and in the more general self-conformal case in the topological sense.


Author(s):  
Felix Herold ◽  
Daniel Hug ◽  
Christoph Thäle

AbstractPoisson processes in the space of $$(d-1)$$ ( d - 1 ) -dimensional totally geodesic subspaces (hyperplanes) in a d-dimensional hyperbolic space of constant curvature $$-1$$ - 1 are studied. The k-dimensional Hausdorff measure of their k-skeleton is considered. Explicit formulas for first- and second-order quantities restricted to bounded observation windows are obtained. The central limit problem for the k-dimensional Hausdorff measure of the k-skeleton is approached in two different set-ups: (i) for a fixed window and growing intensities, and (ii) for fixed intensity and growing spherical windows. While in case (i) the central limit theorem is valid for all $$d\ge 2$$ d ≥ 2 , it is shown that in case (ii) the central limit theorem holds for $$d\in \{2,3\}$$ d ∈ { 2 , 3 } and fails if $$d\ge 4$$ d ≥ 4 and $$k=d-1$$ k = d - 1 or if $$d\ge 7$$ d ≥ 7 and for general k. Also rates of convergence are studied and multivariate central limit theorems are obtained. Moreover, the situation in which the intensity and the spherical window are growing simultaneously is discussed. In the background are the Malliavin–Stein method for normal approximation and the combinatorial moment structure of Poisson U-statistics as well as tools from hyperbolic integral geometry.


1985 ◽  
Vol 26 (2) ◽  
pp. 115-120 ◽  
Author(s):  
Murali Rao

Let D be a domain in Euclidean space of d dimensions and K a compact subset of D. The well known Harnack inequality assures the existence of a positive constant A depending only on D and K such that (l/A)u(x)<u(y)<Au(x) for all x and y in K and all positive harmonic functions u on D. In this we obtain a global integral version of this inequality under geometrical conditions on the domain. The result is the following: suppose D is a Lipschitz domain satisfying the uniform exterior sphere condition—stated in Section 2. If u is harmonic in D with continuous boundary data f thenwhere ds is the d — 1 dimensional Hausdorff measure on the boundary ժD. A large class of domains satisfy this condition. Examples are C2-domains, convex domains, etc.


2000 ◽  
Vol 11 (08) ◽  
pp. 1057-1078
Author(s):  
JINGBO XIA

Kuroda's version of the Weyl-von Neumann theorem asserts that, given any norm ideal [Formula: see text] not contained in the trace class [Formula: see text], every self-adjoint operator A admits the decomposition A=D+K, where D is a self-adjoint diagonal operator and [Formula: see text]. We extend this theorem to the setting of multiplication operators on compact metric spaces (X, d). We show that if μ is a regular Borel measure on X which has a σ-finite one-dimensional Hausdorff measure, then the family {Mf:f∈ Lip (X)} of multiplication operators on T2(X, μ) can be simultaneously diagonalized modulo any [Formula: see text]. Because the condition [Formula: see text] in general cannot be dropped (Kato-Rosenblum theorem), this establishes a special relation between [Formula: see text] and the one-dimensional Hausdorff measure. The main result of the paper is that such a relation breaks down in Hausdorff dimensions p>1.


Sign in / Sign up

Export Citation Format

Share Document