Central Extensions of Loop Groups and Obstruction to Pre-Quantization

2013 ◽  
Vol 56 (1) ◽  
pp. 116-126 ◽  
Author(s):  
Derek Krepski

AbstractAn explicit construction of a pre-quantumline bundle for themoduli space of flat G-bundles over a Riemann surface is given, where G is any non-simply connected compact simple Lie group. This work helps to explain a curious coincidence previously observed between Toledano Laredo's work classifying central extensions of loop groups LG and the author's previous work on the obstruction to pre-quantization of the moduli space of flat G-bundles.

2008 ◽  
Vol 144 (4) ◽  
pp. 1017-1045 ◽  
Author(s):  
André Henriques

AbstractGiven a Lie n-algebra, we provide an explicit construction of its integrating Lie n-group. This extends work done by Getzler in the case of nilpotent $L_\infty $-algebras. When applied to an ordinary Lie algebra, our construction yields the simplicial classifying space of the corresponding simply connected Lie group. In the case of the string Lie 2-algebra of Baez and Crans, we obtain the simplicial nerve of their model of the string group.


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Anamaría Font ◽  
Bernardo Fraiman ◽  
Mariana Graña ◽  
Carmen A. Núñez ◽  
Héctor Parra De Freitas

Abstract Compactifications of the heterotic string on special Td/ℤ2 orbifolds realize a landscape of string models with 16 supercharges and a gauge group on the left-moving sector of reduced rank d + 8. The momenta of untwisted and twisted states span a lattice known as the Mikhailov lattice II(d), which is not self-dual for d > 1. By using computer algorithms which exploit the properties of lattice embeddings, we perform a systematic exploration of the moduli space for d ≤ 2, and give a list of maximally enhanced points where the U(1)d+8 enhances to a rank d + 8 non-Abelian gauge group. For d = 1, these groups are simply-laced and simply-connected, and in fact can be obtained from the Dynkin diagram of E10. For d = 2 there are also symplectic and doubly-connected groups. For the latter we find the precise form of their fundamental groups from embeddings of lattices into the dual of II(2). Our results easily generalize to d > 2.


2020 ◽  
Vol 32 (5) ◽  
pp. 1315-1336
Author(s):  
Gianfranco Casnati ◽  
Ozhan Genc

AbstractWe deal with instanton bundles on the product {\mathbb{P}^{1}\times\mathbb{P}^{2}} and the blow up of {\mathbb{P}^{3}} along a line. We give an explicit construction leading to instanton bundles. Moreover, we also show that they correspond to smooth points of a unique irreducible component of their moduli space.


2005 ◽  
Vol 16 (09) ◽  
pp. 941-955 ◽  
Author(s):  
ALI BAKLOUTI ◽  
FATMA KHLIF

Let G be a connected, simply connected nilpotent Lie group, H and K be connected subgroups of G. We show in this paper that the action of K on X = G/H is proper if and only if the triple (G,H,K) has the compact intersection property in both cases where G is at most three-step and where G is special, extending then earlier cases. The result is also proved for exponential homogeneous space on which acts a maximal subgroup.


1999 ◽  
Vol 19 (3) ◽  
pp. 559-569
Author(s):  
D. BENARDETE ◽  
S. G. DANI

Given a Lie group $G$ and a lattice $\Gamma$ in $G$, a one-parameter subgroup $\phi$ of $G$ is said to be rigid if for any other one-parameter subgroup $\psi$, the flows induced by $\phi$ and $\psi$ on $\Gamma\backslash G$ (by right translations) are topologically orbit-equivalent only if they are affinely orbit-equivalent. It was previously known that if $G$ is a simply connected solvable Lie group such that all the eigenvalues of $\mathrm{Ad} (g) $, $g\in G$, are real, then all one-parameter subgroups of $G$ are rigid for any lattice in $G$. Here we consider a complementary case, in which the eigenvalues of $\mathrm{Ad} (g)$, $g\in G$, form the unit circle of complex numbers.Let $G$ be the semidirect product $N \rtimes M$, where $M$ and $N$ are finite-dimensional real vector spaces and where the action of $M$ on the normal subgroup $N$ is such that the center of $G$ is a lattice in $M$. We prove that there is a generic class of abelian lattices $\Gamma$ in $G$ such that any semisimple one-parameter subgroup $\phi$ (namely $\phi$ such that $\mathrm{Ad} (\phi_t)$ is diagonalizable over the complex numbers for all $t$) is rigid for $\Gamma$ (see Theorem 1.4). We also show that, on the other hand, there are fairly high-dimensional spaces of abelian lattices for which some semisimple $\phi$ are not rigid (see Corollary 4.3); further, there are non-rigid semisimple $\phi$ for which the induced flow is ergodic.


2016 ◽  
Vol 08 (02) ◽  
pp. 273-285 ◽  
Author(s):  
Hisashi Kasuya

For a lattice [Formula: see text] of a simply connected solvable Lie group [Formula: see text], we describe the analytic germ in the variety of representations of [Formula: see text] at the trivial representation as an analytic germ which is linearly embedded in the analytic germ associated with the nilpotent Lie algebra determined by [Formula: see text]. By this description, under certain assumption, we study the singularity of the analytic germ in the variety of representations of [Formula: see text] at the trivial representation by using the Kuranishi space construction. By a similar technique, we also study deformations of holomorphic structures of trivial vector bundles over complex parallelizable solvmanifolds.


1998 ◽  
Vol 09 (01) ◽  
pp. 1-45 ◽  
Author(s):  
JØRGEN ELLEGAARD ANDERSEN

Given a foliation F with closed leaves and with certain kinds of singularities on an oriented closed surface Σ, we construct in this paper an isotropic foliation on ℳ(Σ), the moduli space of flat G-connections, for G any compact simple simply connected Lie-group. We describe the infinitesimal structure of this isotropic foliation in terms of the basic cohomology with twisted coefficients of F. For any pair (F, g), where g is a singular metric on Σ compatible with F, we construct a new polarization on the symplectic manifold ℳ′(Σ), the open dense subset of smooth points of ℳ(Σ). We construct a sequence of complex structures on Σ, such that the corresponding complex structures on ℳ′(Σ) converges to the polarization associated to (F, g). In particular we see that the Jeffrey–Weitzman polarization on the SU(2)-moduli space is the limit of a sequence of complex structures induced from a degenerating family of complex structures on Σ, which converges to a point in the Thurston boundary of Teichmüller space of Σ. As a corollary of the above constructions, we establish a certain discontinuiuty at the Thurston boundary of Teichmüller space for the map from Teichmüller space to the space of polarizations on ℳ′(Σ). For any reducible finite order diffeomorphism of the surface, our constuction produces an invariant polarization on the moduli space.


Sign in / Sign up

Export Citation Format

Share Document