Jeśmanowicz’ Conjecture with Congruence Relations. II

2014 ◽  
Vol 57 (3) ◽  
pp. 495-505 ◽  
Author(s):  
Yasutsugu Fujita ◽  
Takafumi Miyazaki

AbstractLet a, b, and c be primitive Pythagorean numbers such that a2 + b2 = c2 with b even. In this paper, we show that if b0 ≡ ∊(mod a) with ε ∊ {±1} for certain positive divisors b0 of b, then the Diophantine equation ax + by = cz has only the positive solution (x, y, z) = (2, 2, 2).

2012 ◽  
Vol 86 (2) ◽  
pp. 348-352 ◽  
Author(s):  
ZHI-JUAN YANG ◽  
MIN TANG

AbstractLet a,b,c be relatively prime positive integers such that a2+b2=c2. Half a century ago, Jeśmanowicz [‘Several remarks on Pythagorean numbers’, Wiadom. Mat.1 (1955/56), 196–202] conjectured that for any given positive integer n the only solution of (an)x+(bn)y=(cn)z in positive integers is (x,y,z)=(2,2,2). In this paper, we show that (8n)x+(15n)y=(17n)z has no solution in positive integers other than (x,y,z)=(2,2,2).


2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


2015 ◽  
Vol 3 (2) ◽  
Author(s):  
Jayashree Nair ◽  
T. Padma

This paper describes an authentication scheme that uses Diophantine equations based generation of the secret locations to embed the authentication and recovery watermark in the DWT sub-bands. The security lies in the difficulty of finding a solution to the Diophantine equation. The scheme uses the content invariant features of the image as a self-authenticating watermark and a quantized down sampled approximation of the original image as a recovery watermark for visual authentication, both embedded securely using secret locations generated from solution of the Diophantine equations formed from the PQ sequences. The scheme is mildly robust to Jpeg compression and highly robust to Jpeg2000 compression. The scheme also ensures highly imperceptible watermarked images as the spatio –frequency properties of DWT are utilized to embed the dual watermarks.


Public Voices ◽  
2016 ◽  
Vol 13 (2) ◽  
pp. 89
Author(s):  
Rachel Lange ◽  
Kimberly Nelson

Despite gains by women in many professional fields, the top level of local government management ranks continues to be populated primarily by man. The percentage of females serving as local government chief administrators has not increased since the 1980s. Little empirical research exists that attempts to uncover the reason for the gender gap. The purpose of this research is to identify some of the obstacles and barriers that affect a woman’s decision to advance her career in local government. Utilizing an online survey, the authors surveyed female chief administrative officers (CAOs), assistant CAOs, assistant to the CAOs, and deputy CAOs in Illinois. The survey results show that barriers such as a male dominated culture and time commitment to work life and family life are preventing females from achieving higher authority. Mentoring proves to be a positive solution to many of the barriers facing women in local government.


1988 ◽  
Vol 9 (8) ◽  
pp. 727-736
Author(s):  
Lan Kun-quan ◽  
Ding Xie-ping
Keyword(s):  

Author(s):  
Yunru Bai ◽  
Nikolaos S. Papageorgiou ◽  
Shengda Zeng

AbstractWe consider a parametric nonlinear, nonhomogeneous Dirichlet problem driven by the (p, q)-Laplacian with a reaction involving a singular term plus a superlinear reaction which does not satisfy the Ambrosetti–Rabinowitz condition. The main goal of the paper is to look for positive solutions and our approach is based on the use of variational tools combined with suitable truncations and comparison techniques. We prove a bifurcation-type theorem describing in a precise way the dependence of the set of positive solutions on the parameter $$\lambda $$ λ . Moreover, we produce minimal positive solutions and determine the monotonicity and continuity properties of the minimal positive solution map.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1813
Author(s):  
S. Subburam ◽  
Lewis Nkenyereye ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
M. Kameswari ◽  
...  

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.


2020 ◽  
Vol 18 (1) ◽  
pp. 1727-1741
Author(s):  
Yoonjin Lee ◽  
Yoon Kyung Park

Abstract We study the modularity of Ramanujan’s function k ( τ ) = r ( τ ) r 2 ( 2 τ ) k(\tau )=r(\tau ){r}^{2}(2\tau ) , where r ( τ ) r(\tau ) is the Rogers-Ramanujan continued fraction. We first find the modular equation of k ( τ ) k(\tau ) of “an” level, and we obtain some symmetry relations and some congruence relations which are satisfied by the modular equations; these relations are quite useful for reduction of the computation cost for finding the modular equations. We also show that for some τ \tau in an imaginary quadratic field, the value k ( τ ) k(\tau ) generates the ray class field over an imaginary quadratic field modulo 10; this is because the function k is a generator of the field of the modular function on Γ 1 ( 10 ) {{\mathrm{\Gamma}}}_{1}(10) . Furthermore, we suggest a rather optimal way of evaluating the singular values of k ( τ ) k(\tau ) using the modular equations in the following two ways: one is that if j ( τ ) j(\tau ) is the elliptic modular function, then one can explicitly evaluate the value k ( τ ) k(\tau ) , and the other is that once the value k ( τ ) k(\tau ) is given, we can obtain the value k ( r τ ) k(r\tau ) for any positive rational number r immediately.


Sign in / Sign up

Export Citation Format

Share Document