Convex Functions on Discrete Time Domains

2016 ◽  
Vol 59 (2) ◽  
pp. 225-233 ◽  
Author(s):  
Ferhan M. Atıcı ◽  
Hatice Yaldız

AbstractIn this paper, we introduce the definition of a convex real valued function f defined on the set of integers, ℤ. We prove that f is convex on Z if and only if Δ2 f ≥ 0 on ℤ. As a first application of this new concept, we state and prove discrete Hermite–Hadamard inequality using the basics of discrete calculus (i.e., the calculus on Z). Second, we state and prove the discrete fractional Hermite–Hadamard inequality using the basics of discrete fractional calculus. We close the paper by defining the convexity of a real valued function on any time scale.

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Fahd Jarad ◽  
Kenan Taş

In this paper, starting from the definition of the Sumudu transform on a general time scale, we define the generalized discrete Sumudu transform and present some of its basic properties. We obtain the discrete Sumudu transform of Taylor monomials, fractional sums, and fractional differences. We apply this transform to solve some fractional difference initial value problems.


Analysis ◽  
2017 ◽  
Vol 37 (4) ◽  
Author(s):  
Hatice Yaldız ◽  
Praveen Agarwal

AbstractIn the present work, we give the definition of an


2016 ◽  
Vol 26 (01) ◽  
pp. 1650013 ◽  
Author(s):  
Guo-Cheng Wu ◽  
Dumitru Baleanu ◽  
He-Ping Xie ◽  
Sheng-Da Zeng

Discrete fractional calculus is suggested in diffusion modeling in porous media. A variable-order fractional diffusion equation is proposed on discrete time scales. A function of the variable order is constructed by a chaotic map. The model shows some new random behaviors in comparison with other variable-order cases.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1402 ◽  
Author(s):  
Miguel J. Vivas-Cortez ◽  
Artion Kashuri ◽  
Rozana Liko ◽  
Jorge E. Hernández Hernández

In the present work, the Hermite–Hadamard inequality is established in the setting of quantum calculus for a generalized class of convex functions depending on three parameters: a number in ( 0 , 1 ] and two arbitrary real functions defined on [ 0 , 1 ] . From the proven results, various inequalities of the same type are deduced for other types of generalized convex functions and the methodology used reveals, in a sense, a symmetric mathematical phenomenon. In addition, the definition of dominated convex functions with respect to the generalized class of convex functions aforementioned is introduced, and some integral inequalities are established.


2015 ◽  
Vol 19 (4) ◽  
pp. 1177-1181
Author(s):  
Yan-Mei Qin ◽  
Hua Kong ◽  
Kai-Teng Wu ◽  
Xiao-Ming Zhu

Fractional calculus can always exactly describe anomalous diffusion. Recently the discrete fractional difference is becoming popular due to the depiction of non-linear evolution on discrete time domains. This paper proposes a diffusion model with two terms of discrete fractional order. The numerical simulation is given to reveal various diffusion behaviors.


Fractals ◽  
2021 ◽  
pp. 2240004
Author(s):  
FUZHANG WANG ◽  
USAMA HANIF ◽  
AMMARA NOSHEEN ◽  
KHURAM ALI KHAN ◽  
HIJAZ AHMAD ◽  
...  

In this paper, some Jensen- and Hardy-type inequalities for convex functions are extended by using Riemann–Liouville delta fractional integrals. Further, some Pólya–Knopp-type inequalities and Hardy–Hilbert-type inequality for convex functions are also proved. Moreover, some related inequalities are proved by using special kernels. Particular cases of resulting inequalities provide the results on fractional calculus, time scales calculus, quantum fractional calculus and discrete fractional calculus.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Chahn Yong Jung ◽  
Ghulam Farid ◽  
Kahkashan Mahreen ◽  
Soo Hak Shim

In this paper, we study integral inequalities which will provide refinements of bounds of unified integral operators established for convex and α , m -convex functions. A new definition of function, namely, strongly α , m -convex function is applied in different forms and an extended Mittag-Leffler function is utilized to get the required results. Moreover, the obtained results in special cases give refinements of fractional integral inequalities published in this decade.


2016 ◽  
Vol 14 (1) ◽  
pp. 1122-1124 ◽  
Author(s):  
Ricardo Almeida ◽  
Małgorzata Guzowska ◽  
Tatiana Odzijewicz

AbstractIn this short note we present a new general definition of local fractional derivative, that depends on an unknown kernel. For some appropriate choices of the kernel we obtain some known cases. We establish a relation between this new concept and ordinary differentiation. Using such formula, most of the fundamental properties of the fractional derivative can be derived directly.


Author(s):  
Dafang Zhao ◽  
Muhammad Aamir Ali ◽  
Artion Kashuri ◽  
Hüseyin Budak ◽  
Mehmet Zeki Sarikaya

Abstract In this paper, we present a new definition of interval-valued convex functions depending on the given function which is called “interval-valued approximately h-convex functions”. We establish some inequalities of Hermite–Hadamard type for a newly defined class of functions by using generalized fractional integrals. Our new inequalities are the extensions of previously obtained results like (D.F. Zhao et al. in J. Inequal. Appl. 2018(1):302, 2018 and H. Budak et al. in Proc. Am. Math. Soc., 2019). We also discussed some special cases from our main results.


Sign in / Sign up

Export Citation Format

Share Document