scholarly journals On Sumudu Transform Method in Discrete Fractional Calculus

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Fahd Jarad ◽  
Kenan Taş

In this paper, starting from the definition of the Sumudu transform on a general time scale, we define the generalized discrete Sumudu transform and present some of its basic properties. We obtain the discrete Sumudu transform of Taylor monomials, fractional sums, and fractional differences. We apply this transform to solve some fractional difference initial value problems.

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1303
Author(s):  
Pshtiwan Othman Mohammed ◽  
Thabet Abdeljawad ◽  
Faraidun Kadir Hamasalh

Monotonicity analysis of delta fractional sums and differences of order υ∈(0,1] on the time scale hZ are presented in this study. For this analysis, two models of discrete fractional calculus, Riemann–Liouville and Caputo, are considered. There is a relationship between the delta Riemann–Liouville fractional h-difference and delta Caputo fractional h-differences, which we find in this study. Therefore, after we solve one, we can apply the same method to the other one due to their correlation. We show that y(z) is υ-increasing on Ma+υh,h, where the delta Riemann–Liouville fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to zero, and then, we can show that y(z) is υ-increasing on Ma+υh,h, where the delta Caputo fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to −1Γ(1−υ)(z−(a+υh))h(−υ)y(a+υh) for each z∈Ma+h,h. Conversely, if y(a+υh) is greater or equal to zero and y(z) is increasing on Ma+υh,h, we show that the delta Riemann–Liouville fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to zero, and consequently, we can show that the delta Caputo fractional h-difference of order υ of a function y(z) starting at a+υh is greater or equal to −1Γ(1−υ)(z−(a+υh))h(−υ)y(a+υh) on Ma,h. Furthermore, we consider some related results for strictly increasing, decreasing, and strictly decreasing cases. Finally, the fractional forward difference initial value problems and their solutions are investigated to test the mean value theorem on the time scale hZ utilizing the monotonicity results.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Dorota Mozyrska ◽  
Małgorzata Wyrwas

The Caputo-, Riemann-Liouville-, and Grünwald-Letnikov-type difference initial value problems for linear fractional-order systems are discussed. We take under our consideration the possible solutions via the classicalZ-transform method. We stress the formula for the image of the discrete Mittag-Leffler matrix function in theZ-transform. We also prove forms of images in theZ-transform of the expressed fractional difference summation and operators. Additionally, the stability problem of the considered systems is studied.


2016 ◽  
Vol 59 (2) ◽  
pp. 225-233 ◽  
Author(s):  
Ferhan M. Atıcı ◽  
Hatice Yaldız

AbstractIn this paper, we introduce the definition of a convex real valued function f defined on the set of integers, ℤ. We prove that f is convex on Z if and only if Δ2 f ≥ 0 on ℤ. As a first application of this new concept, we state and prove discrete Hermite–Hadamard inequality using the basics of discrete calculus (i.e., the calculus on Z). Second, we state and prove the discrete fractional Hermite–Hadamard inequality using the basics of discrete fractional calculus. We close the paper by defining the convexity of a real valued function on any time scale.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Li Xiao-yan ◽  
Jiang Wei

We discuss the Laplace transform of the Caputo fractional difference and the fractional discrete Mittag-Leffer functions. On these bases, linear and nonlinear fractional initial value problems are solved by the Laplace transform method.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
H. M. Srivastava ◽  
Alireza Khalili Golmankhaneh ◽  
Dumitru Baleanu ◽  
Xiao-Jun Yang

Local fractional derivatives were investigated intensively during the last few years. The coupling method of Sumudu transform and local fractional calculus (called as the local fractional Sumudu transform) was suggested in this paper. The presented method is applied to find the nondifferentiable analytical solutions for initial value problems with local fractional derivative. The obtained results are given to show the advantages.


2021 ◽  
Vol 5 (3) ◽  
pp. 116
Author(s):  
Pshtiwan Othman Mohammed ◽  
Thabet Abdeljawad ◽  
Faraidun Kadir Hamasalh

The discrete delta Caputo-Fabrizio fractional differences and sums are proposed to distinguish their monotonicity analysis from the sense of Riemann and Caputo operators on the time scale Z. Moreover, the action of Q− operator and discrete delta Laplace transform method are also reported. Furthermore, a relationship between the discrete delta Caputo-Fabrizio-Caputo and Caputo-Fabrizio-Riemann fractional differences is also studied in detail. To better understand the dynamic behavior of the obtained monotonicity results, the fractional difference mean value theorem is derived. The idea used in this article is readily applicable to obtain monotonicity analysis of other discrete fractional operators in discrete fractional calculus.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 594-612 ◽  
Author(s):  
Abdon Atangana ◽  
Emile Franc Doungmo Goufo

AbstractHumans are part of nature, and as nature existed before mankind, mathematics was created by humans with the main aim to analyze, understand and predict behaviors observed in nature. However, besides this aspect, mathematicians have introduced some laws helping them to obtain some theoretical results that may not have physical meaning or even a representation in nature. This is also the case in the field of fractional calculus in which the main aim was to capture more complex processes observed in nature. Some laws were imposed and some operators were misused, such as, for example, the Riemann–Liouville and Caputo derivatives that are power-law-based derivatives and have been used to model problems with no power law process. To solve this problem, new differential operators depicting different processes were introduced. This article aims to clarify some misunderstandings about the use of fractional differential and integral operators with non-singular kernels. Additionally, we suggest some numerical discretizations for the new differential operators to be used when dealing with initial value problems. Applications of some nature processes are provided.


2020 ◽  
Vol 4 (1) ◽  
pp. 448-455
Author(s):  
Mulugeta Andualem ◽  
◽  
Atinafu Asfaw ◽  

Nonlinear initial value problems are somewhat difficult to solve analytically as well as numerically related to linear initial value problems as their variety of natures. Because of this, so many scientists still searching for new methods to solve such nonlinear initial value problems. However there are many methods to solve it. In this article we have discussed about the approximate solution of nonlinear first order ordinary differential equation using ZZ decomposition method. This method is a combination of the natural transform method and Adomian decomposition method.


Author(s):  
Yiheng Wei ◽  
Weidi Yin ◽  
Yanting Zhao ◽  
Yong Wang

The primary work of this paper is to investigate some potential properties of Grünwald–Letnikov discrete fractional calculus. By employing a concise and convenient description, this paper not only establishes excellent relationships between fractional difference/sum and the integer order case but also generalizes the Z-transform and convolution operation.


Sign in / Sign up

Export Citation Format

Share Document