scholarly journals On the development of miransertib for rare diseases: an interview with ArQule's Brian Schwartz

2020 ◽  
Vol 2 (1) ◽  
pp. FDD27
Author(s):  
Brian Schwartz

Brian Schwartz is CMO of ArQule, a clinical-stage biopharmaceutical company developing small-molecule kinase inhibitors for precision medicine oncology and rare diseases. In this interview he tells us more about the company's current projects, which include drug development for the rare diseases Proteus syndrome and PROS.

Author(s):  
Elena De Vita

In the first decade of targeted covalent inhibition, scientists have successfully reversed the previous trend that had impeded the use of covalent inhibition in drug development. Successes in the clinic, mainly in the field of kinase inhibitors, are existing proof that safe covalent inhibitors can be designed and employed to develop effective treatments. The case of KRASG12C covalent inhibitors entering clinical trials in 2019 has been among the hottest topics discussed in drug discovery, raising expectations for the future of the field. In this perspective, an overview of the milestones hit with targeted covalent inhibitors, as well as the promise and the needs of current research, are presented. While recent results have confirmed the potential that was foreseen, many questions remain unexplored in this branch of precision medicine.


2018 ◽  
Vol 25 (24) ◽  
pp. 2764-2782 ◽  
Author(s):  
Erica Valencic ◽  
Alenka Smid ◽  
Ziga Jakopin ◽  
Alberto Tommasini ◽  
Irena Mlinaric-Rascan

Human primary immunodeficiency diseases (PIDs) are a large group of rare diseases and are characterized by a great genetic and phenotypic heterogeneity. A large subset of PIDs is genetically defined, which has a crucial impact for the understanding of the molecular basis of disease and the development of precision medicine. <p> Discovery and development of new therapies for rare diseases has long been de-privileged due to the length and cost of the processes involved. Interest has increased due to stimulatory regulatory and supportive reimbursement environments enabling viable business models. <p> Advancements in biomedical and computational sciences enable the development of rational, designed approaches for identification of novel indications of already approved drugs allowing faster delivery of new medicines. Drug repositioning is based either on clinical analogies of diseases or on understanding of the molecular mode of drug action and mechanisms of the disease. All of these are the basis for the development of precision medicine.


2016 ◽  
Vol 13 (12) ◽  
pp. 1330-1336 ◽  
Author(s):  
V. Tell ◽  
I. Hilbrich ◽  
M. Holzer ◽  
Frank Totzke ◽  
Christoph Schachtele ◽  
...  

2021 ◽  
Vol 14 (2) ◽  
pp. 119
Author(s):  
Ruben A. G. van Eerden ◽  
Esther Oomen-de Hoop ◽  
Aad Noordam ◽  
Ron H. J. Mathijssen ◽  
Stijn L. W. Koolen

Small molecule kinase inhibitors (SMKIs) are widely used in oncology. Therapeutic drug monitoring (TDM) for SMKIs could reduce underexposure or overexposure. However, logistical issues such as timing of blood withdrawals hamper its implementation into clinical practice. Extrapolating a random concentration to a trough concentration using the elimination half-life could be a simple and easy way to overcome this problem. In our study plasma concentrations observed during 24 h blood sampling were used for extrapolation to trough levels. The objective was to demonstrate that extrapolation of randomly taken blood samples will lead to equivalent estimated trough samples compared to measured Cmin values. In total 2241 blood samples were analyzed. The estimated Ctrough levels of afatinib and sunitinib fulfilled the equivalence criteria if the samples were drawn after Tmax. The calculated Ctrough levels of erlotinib, imatinib and sorafenib met the equivalence criteria if they were taken, respectively, 12 h, 3 h and 10 h after drug intake. For regorafenib extrapolation was not feasible. In conclusion, extrapolation of randomly taken drug concentrations to a trough concentration using the mean elimination half-life is feasible for multiple SMKIs. Therefore, this simple method could positively contribute to the implementation of TDM in oncology.


2015 ◽  
Vol 36 (7) ◽  
pp. 422-439 ◽  
Author(s):  
Peng Wu ◽  
Thomas E. Nielsen ◽  
Mads H. Clausen

Sign in / Sign up

Export Citation Format

Share Document