Fault Diagnosis of Electrical Control System by Least Squares Support Vector Machine

Author(s):  
Cao jian hua
2014 ◽  
Vol 666 ◽  
pp. 203-207
Author(s):  
Jian Hua Cao

This paper is to present a fault diagnosis method for electrical control system of automobile based on support vector machine. We collect the common fault states of electrical control system of automobile to analyze the fault diagnosis ability of electrical control system of automobile based on support vector machine. It can be seen that the accuracy of fault diagnosis for electrical control system of automobile by support vector machine is 92.31%; and the accuracy of fault diagnosis for electrical control system of automobile by BP neural network is 80.77%. The experimental results show that the accuracy of fault diagnosis for electrical control system of automobile of support vector machine is higher than that of BP neural network.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402092204
Author(s):  
Yan Lu ◽  
Zhiping Huang

Gear pump is the key component in hydraulic drive system, and it is very significant to fault diagnosis for gear pump. The combination of sparsity empirical wavelet transform and adaptive dynamic least squares support vector machine is proposed for fault diagnosis of gear pump in this article. Sparsity empirical wavelet transform is used to obtain the features of the vibrational signal of gear pump, the sparsity function is potential to make empirical wavelet transform adaptive, and adaptive dynamic least squares support vector machine is used to recognize the state of gear pump. The experimental results show that the diagnosis accuracies of sparsity empirical wavelet transform and adaptive dynamic least squares support vector machine are better than those of the empirical wavelet transform and adaptive dynamic least squares support vector machine method or the empirical wavelet transform and least squares support vector machine method.


2019 ◽  
Vol 9 (19) ◽  
pp. 4122 ◽  
Author(s):  
Bo Wang ◽  
Hongwei Ke ◽  
Xiaodong Ma ◽  
Bing Yu

Due to the poor working conditions of an engine, its control system is prone to failure. If these faults cannot be treated in time, it will cause great loss of life and property. In order to improve the safety and reliability of an aero-engine, fault diagnosis, and optimization method of engine control system based on probabilistic neural network (PNN) and support vector machine (SVM) is proposed. Firstly, using the German 3 W piston engine as a control object, the fault diagnosis scheme is designed and introduced briefly. Then, the fault injection is performed to produce faults, and the data sample for engine fault diagnosis is established. Finally, the important parameters of PNN and SVM are optimized by particle swarm optimization (PSO), and the results are analyzed and compared. It shows that the engine fault diagnosis method based on PNN and SVM can effectively diagnose the common faults. Under the optimization of PSO, the accuracy of PNN and SVM results are significantly improved, the classification accuracy of PNN is up to 96.4%, and the accuracy of SVM is up to 98.8%, which improves the application of them in fault diagnosis technology of aero-piston engine control system.


2011 ◽  
Vol 50-51 ◽  
pp. 624-628
Author(s):  
Xin Ma

Dissolved gas analysis (DGA) is an important method to diagnose the fault of power t ransformer. Least squares support vector machine (LS-SVM) has excellent learning, classification ability and generalization ability, which use structural risk minimization instead of traditional empirical risk minimization based on large sample. LS-SVM is widely used in pattern recognition and function fitting. Kernel parameter selection is very important and decides the precision of power transformer fault diagnosis. In order to enhance fault diagnosis precision, a new fault diagnosis method is proposed by combining particle swarm optimization (PSO) and LS-SVM algorithm. It is presented to choose σ parameter of kernel function on dynamic, which enhances precision rate of fault diagnosis and efficiency. The experiments show that the algorithm can efficiently find the suitable kernel parameters which result in good classification purpose.


Sign in / Sign up

Export Citation Format

Share Document