scholarly journals USE OF CONTINUOUS GLUCOSE MONITORING LEADS TO DIAGNOSIS OF HEMOGLOBIN C TRAIT IN A PATIENT WITH DISCREPANT HEMOGLOBIN A1C AND SELF-MONITORED BLOOD GLUCOSE

2019 ◽  
Vol 5 (1) ◽  
pp. e31-e34 ◽  
Author(s):  
Jordan J. Wright ◽  
Jiun-Ruey Hu ◽  
Zahra Shajani-Yi ◽  
Shichun Bao
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jen-Hung Huang ◽  
Yung-Kuo Lin ◽  
Ting-Wei Lee ◽  
Han-Wen Liu ◽  
Yu-Mei Chien ◽  
...  

Abstract Background Glucose monitoring is vital for glycemic control in patients with diabetes mellitus (DM). Continuous glucose monitoring (CGM) measures whole-day glucose levels. Hemoglobin A1c (HbA1c) is a vital outcome predictor in patients with DM. Methods This study investigated the relationship between HbA1c and CGM, which remained unclear hitherto. Data of patients with DM (n = 91) who received CGM and HbA1c testing (1–3 months before and after CGM) were retrospectively analyzed. Diurnal and nocturnal glucose, highest CGM data (10%, 25%, and 50%), mean amplitude of glycemic excursions (MAGE), percent coefficient of variation (%CV), and continuous overlapping net glycemic action were compared with HbA1c values before and after CGM. Results The CGM results were significantly correlated with HbA1c values measured 1 (r = 0.69) and 2 (r = 0.39) months after CGM and 1 month (r = 0.35) before CGM. However, glucose levels recorded in CGM did not correlate with the HbA1c values 3 months after and 2–3 months before CGM. MAGE and %CV were strongly correlated with HbA1c values 1 and 2 months after CGM, respectively. Diurnal blood glucose levels were significantly correlated with HbA1c values 1–2 months before and 1 month after CGM. The nocturnal blood glucose levels were significantly correlated with HbA1c values 1–3 months before and 1–2 months after CGM. Conclusions CGM can predict HbA1c values within 1 month after CGM in patients with DM.


2021 ◽  
Author(s):  
Jen-Hung Huang ◽  
Yung-Kuo Lin ◽  
Ting-Wei Lee ◽  
Han-Wen Liu ◽  
Yu-Mei Chien ◽  
...  

Abstract Background: Glucose monitoring is vital for glycemic control in patients with diabetes mellitus (DM). Continuous glucose monitoring (CGM) measures whole-day glucose levels. Hemoglobin A1c (HbA1c) is a vital outcome predictor in patients with DM. Methods: This study investigated the relationship between HbA1c and CGM, which remained unclear hitherto. Data of patients with DM (n = 91) who received CGM and HbA1c testing (1-3 months before and after CGM) were retrospectively analyzed. Diurnal and nocturnal glucose, highest CGM data (10%, 25%, and 50%), mean amplitude of glycemic excursions (MAGE), percent coefficient of variation (%CV), and continuous overlapping net glycemic action were compared with HbA1c values before and after CGM. Results: The CGM results were significantly correlated with HbA1c values measured 1 (r = 0.69) and 2 (r = 0.39) months after CGM and 1 month (r = 0.35) before CGM. However, glucose levels recorded in CGM did not correlate with the HbA1c values 3 months after and 2-3 months before CGM. MAGE and %CV were strongly correlated with HbA1c values 1 and 2 months after CGM, respectively. Diurnal blood glucose levels were significantly correlated with HbA1c values 1-2 months before and 1 month after CGM. The nocturnal blood glucose levels were significantly correlated with HbA1c values 1-3 months before and 1-2 months after CGM.Conclusions: CGM can predict HbA1c values within 1 month after CGM in patients with DM.


BMJ Open ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. e040648
Author(s):  
Nanna Lind ◽  
Dorte Lindqvist Hansen ◽  
Signe Sætre Rasmussen ◽  
Kirsten Nørgaard

IntroductionMedical treatment options for type 2 diabetes (T2D) have increased over the last decade and enhance the possibility of individualised treatment strategies where insulin is still one of them. In spite of the advancements in treatment options, less than one-third of the population with T2D obtain their optimal glycaemic goal. In persons with type 1 diabetes, continuous glucose monitoring (CGM) has shown to be the most important driver for improvement in glycaemic control, even more than insulin-pump therapy. The use of technology in T2D has only been investigated in few studies.The overall objective of the research study is to examine the effectiveness of the use of CGM versus self-monitoring of blood glucose (SMBG) in persons with insulin-treated T2D on glycaemic variables and patient-reported outcomes on treatment satisfaction, health behaviour and well-being. The independent effect of peer support will also be studied.Methods and analysisThe study is a single centre, prospective, randomised, open-labelled, three-armed study with the randomisation 2:1:2 in group A with CGM, group B with CGM and peer support, and group C as a control group with SMBG. The participants receive a training course unique for the allocation group. The study runs for 12 months and includes 100 adult participants with insulin-treated T2D, treated at the outpatient clinic at Steno Diabetes Center Copenhagen. Primary outcome is difference in change in time in range. Recruitment begins in August 2020 and ends in July 2021. Final 12-month follow-up is anticipated to be in August 2022.Ethics and disseminationThe study will be carried out in accordance with the Helsinki Declaration and is approved by the Scientific Ethics Committee of the Capital Region (H-20000843). Data collection and handling will be performed in accordance with the General Data Protection Regulation and is approved by the Danish Data Protection Agency (J-2020-100). Dissemination will be in international peer-reviewed journals, conferences and a plain-language summary for participants.Trial registration numberClinicalTrials.gov Registry (NCT04331444).Protocol versionV.3, 11 December 2020.


Sign in / Sign up

Export Citation Format

Share Document