scholarly journals Particle size in fat graft retention: A review on the impact of harvesting technique in lipofilling surgical outcomes

Adipocyte ◽  
2014 ◽  
Vol 3 (4) ◽  
pp. 273-279 ◽  
Author(s):  
Trent M Gause ◽  
Russell E Kling ◽  
Wesley N Sivak ◽  
Kacey G Marra ◽  
J Peter Rubin ◽  
...  
Author(s):  
Wojciech Sobieski

AbstractThe paper describes the so-called Waterfall Algorithm, which may be used to calculate a set of parameters characterising the spatial structure of granular porous media, such as shift ratio, collision density ratio, consolidation ratio, path length and minimum tortuosity. The study is performed for 1800 different two-dimensional random pore structures. In each geometry, 100 individual paths are calculated. The impact of porosity and the particle size on the above-mentioned parameters is investigated. It was stated in the paper, that the minimum tortuosity calculated by the Waterfall Algorithm cannot be used directly as a representative tortuosity of pore channels in the Kozeny or the Carman meaning. However, it may be used indirect by making the assumption that a unambiguous relationship between the representative tortuosity and the minimum tortuosity exists. It was also stated, that the new parameters defined in the present study are sensitive on the porosity and the particle size and may be therefore applied as indicators of the geometry structure of granular media. The Waterfall Algorithm is compared with other methods of determining the tortuosity: A-Star Algorithm, Path Searching Algorithm, Random Walk technique, Path Tracking Method and the methodology of calculating the hydraulic tortuosity based on the Lattice Boltzmann Method. A very short calculation time is the main advantage of the Waterfall Algorithm, what meant, that it may be applied in a very large granular porous media.


2021 ◽  
pp. 219256822199630
Author(s):  
Narihito Nagoshi ◽  
Kota Watanabe ◽  
Masaya Nakamura ◽  
Morio Matsumoto ◽  
Nan Li ◽  
...  

Study Design: Retrospective multicenter study. Objectives: To evaluate the surgical outcomes of cervical ossification of the posterior longitudinal ligament (OPLL) in diabetes mellitus (DM) patients. Methods: Approximately 253 cervical OPLL patients who underwent surgical decompression with or without fixation were registered at 4 institutions in 3 Asian countries. They were followed up for at least 2 years. Demographics, imaging, and surgical information were collected, and cervical Japanese Orthopaedic Association (JOA) scores and the visual analog scale (VAS) for the neck were used for evaluation. Results: Forty-seven patients had DM, showing higher hypertension and cardiovascular disease prevalence. Although they presented worse preoperative JOA scores than non-DM patients (10.5 ± 3.1 vs. 11.8 ± 3.2; P = 0.01), the former showed comparable neurologic recovery at the final follow-up (13.9 ± 2.9 vs. 14.2 ± 2.6; P = 0.41). No correlation was noted between the hemoglobin A1c level in the DM group and the pre- and postoperative JOA scores. No significant difference was noted in VAS scores between the groups at pre- and postsurgery. Regarding perioperative complications, DM patients presented a higher C5 palsy frequency (14.9% vs. 5.8%; P = 0.04). A similar trend was observed when surgical procedure was limited to laminoplasty. Conclusions: This is the first multicenter Asian study to evaluate the impact of DM on cervical OPLL patients. Surgical results were favorable even in DM cases, regardless of preoperative hemoglobin A1c levels or operative procedures. However, caution is warranted for the occurrence of C5 palsy after surgery.


2021 ◽  
Vol 11 (15) ◽  
pp. 6874
Author(s):  
Miroslava Vandličkova ◽  
Iveta Markova ◽  
Katarina Holla ◽  
Stanislava Gašpercová

The paper deals with the selected characteristics, such as moisture, average bulk density, and fraction size, of tropical marblewood dust (Marmaroxylon racemosum) that influence its ignition risk. Research was focused on sieve analysis, granulometric analysis, measurement of moisture level in the dust, and determination of the minimum ignition temperatures of airborne tropical dust and dust layers. Samples were prepared using a Makita 9556CR 1400W grinder and K36 sandpaper for the purpose of selecting the percentages of the various fractions (<63, 63, 71, 100, 200, 315, 500 μm). The samples were sized on an automatic vibratory sieve machine Retsch AS 200. More than 65% of the particles were determined to be under 100 μm. The focus was on microfractions of tropical wood dust (particles with a diameter of ≤100 µm) and on the impact assessment of particle size (particle size <100 µm) on the minimum ignition temperatures of airborne tropical dust and dust layers. The minimum ignition temperature of airborne marblewood dust decreased with the particle size to the level of 400 °C (particle size 63 μm).


Author(s):  
Carlos Canelo-Aybar ◽  
Alvaro Taype-Rondan ◽  
Jessica Hanae Zafra-Tanaka ◽  
David Rigau ◽  
Axel Graewingholt ◽  
...  

Abstract Objective To evaluate the impact of preoperative MRI in the management of Ductal carcinoma in situ (DCIS). Methods We searched the PubMed, EMBASE and Cochrane Library databases to identify randomised clinical trials (RCTs) or cohort studies assessing the impact of preoperative breast MRI in surgical outcomes, treatment change or loco-regional recurrence. We provided pooled estimates for odds ratios (OR), relative risks (RR) and proportions and assessed the certainty of the evidence using the GRADE approach. Results We included 3 RCTs and 23 observational cohorts, corresponding to 20,415 patients. For initial breast-conserving surgery (BCS), the RCTs showed that MRI may result in little to no difference (RR 0.95, 95% CI 0.90 to 1.00) (low certainty); observational studies showed that MRI may have no difference in the odds of re-operation after BCS (OR 0.96; 95% CI 0.36 to 2.61) (low certainty); and uncertain evidence from RCTs suggests little to no difference with respect to total mastectomy rate (RR 0.91; 95% CI 0.65 to 1.27) (very low certainty). We also found that MRI may change the initial treatment plans in 17% (95% CI 12 to 24%) of cases, but with little to no effect on locoregional recurrence (aHR = 1.18; 95% CI 0.79 to 1.76) (very low certainty). Conclusion We found evidence of low to very low certainty which may suggest there is no improvement of surgical outcomes with pre-operative MRI assessment of women with DCIS lesions. There is a need for large rigorously conducted RCTs to evaluate the role of preoperative MRI in this population. Key Points • Evidence of low to very low certainty may suggest there is no improvement in surgical outcomes with pre-operative MRI. • There is a need for large rigorously conducted RCTs evaluating the role of preoperative MRI to improve treatment planning for DCIS.


2020 ◽  
Vol 144 ◽  
pp. e774-e779
Author(s):  
Kunal Varshneya ◽  
Martin N. Stienen ◽  
Allen L. Ho ◽  
Zachary A. Medress ◽  
Parastou Fatemi ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Seijiro Sato ◽  
Masaya Nakamura ◽  
Yuki Shimizu ◽  
Tatsuya Goto ◽  
Terumoto Koike ◽  
...  

2007 ◽  
Vol 539-543 ◽  
pp. 1863-1867 ◽  
Author(s):  
X.F. Tao ◽  
Li Ping Zhang ◽  
Y.Y. Zhao

This paper investigated the mechanical response of porous copper manufactured by LCS under three-point bending and Charpy impact conditions. The effects of the compaction pressure and K2CO3 particle size used in producing the porous copper samples and the relative density of the samples were studied. The apparent modulus, flexural strength and energy absorption capacity in three-point bending tests increased exponentially with increasing relative density. The impact strength was not markedly sensitive to relative density and had values within 7 – 9 kJ/m2 for the relative densities in the range 0.17 – 0.31. The amount of energy absorbed by a porous copper sample in the impact test was much higher than that absorbed in the three-point bending test, impling that loading strain rate had a significant effect on the deformation mechanisms. Increasing compaction pressure and increasing K2CO3 particle size resulted in significant increases in the flexural strength and the bending energy absorption capacity, both owing to the reduced sintering defects.


2016 ◽  
Vol 195 (4S) ◽  
Author(s):  
Daniel Olvera-Posada ◽  
Blayne Welk ◽  
J. Andrew McClure ◽  
Jennifer Winick-Ng ◽  
Jonathan I. Izawa ◽  
...  

Author(s):  
Yun Bai ◽  
Grady Wagner ◽  
Christopher B. Williams

The binder jetting additive manufacturing (AM) process provides an economical and scalable means of fabricating complex parts from a wide variety of materials. While it is often used to fabricate metal parts, it is typically challenging to fabricate full density parts without large degree of sintering shrinkage. This can be attributed to the inherently low green density and the constraint on powder particle size imposed by challenges in recoating fine powders. To address this issue, the authors explored the use of bimodal powder mixtures in the context of binder jetting of copper. A variety of bimodal powder mixtures of various particle diameters and mixing ratios were printed and sintered to study the impact of bimodal mixtures on the parts' density and shrinkage. It was discovered that, compared to parts printed with monosized fine powders, the use of bimodal powder mixtures improves the powder's packing density (8.2%) and flowability (10.5%), and increases the sintered density (4.0%) while also reducing the sintering shrinkage (6.4%).


Sign in / Sign up

Export Citation Format

Share Document