scholarly journals Over-expression of CDC14B causes mitotic arrest and inhibits zygotic genome activation in mouse preimplantation embryos

Cell Cycle ◽  
2009 ◽  
Vol 8 (23) ◽  
pp. 3904-3913 ◽  
Author(s):  
Mariano G. Buffone ◽  
Karen Schindler ◽  
Richard M. Schultz
Author(s):  
Yuanyuan Li ◽  
Ning-Hua Mei ◽  
Gui-Ping Cheng ◽  
Jing Yang ◽  
Li-Quan Zhou

Mitochondrion plays an indispensable role during preimplantation embryo development. Dynamic-related protein 1 (DRP1) is critical for mitochondrial fission and controls oocyte maturation. However, its role in preimplantation embryo development is still lacking. In this study, we demonstrate that inhibition of DRP1 activity by mitochondrial division inhibitor-1, a small molecule reported to specifically inhibit DRP1 activity, can cause severe developmental arrest of preimplantation embryos in a dose-dependent manner in mice. Meanwhile, DRP1 inhibition resulted in mitochondrial dysfunction including decreased mitochondrial activity, loss of mitochondrial membrane potential, reduced mitochondrial copy number and inadequate ATP by disrupting both expression and activity of DRP1 and mitochondrial complex assembly, leading to excessive ROS production, severe DNA damage and cell cycle arrest at 2-cell embryo stage. Furthermore, reduced transcriptional and translational activity and altered histone modifications in DRP1-inhibited embryos contributed to impeded zygotic genome activation, which prevented early embryos from efficient development beyond 2-cell embryo stage. These results show that DRP1 inhibition has potential cytotoxic effects on mammalian reproduction, and DRP1 inhibitor should be used with caution when it is applied to treat diseases. Additionally, this study improves our understanding of the crosstalk between mitochondrial metabolism and zygotic genome activation.


2014 ◽  
Vol 386 (1) ◽  
pp. 86-95 ◽  
Author(s):  
Kiho Lee ◽  
Jennifer Hamm ◽  
Kristin Whitworth ◽  
Lee Spate ◽  
Kwang-wook Park ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 829
Author(s):  
Bo Fu ◽  
Hong Ma ◽  
Di Liu

Endogenous retroviruses (ERVs), previously viewed as deleterious relics of ancestral retrovirus infections, are silenced in the vast majority of cells to minimize the risk of retrotransposition. Counterintuitively, bursts of ERV transcription usually occur during maternal-to-zygotic transition (MZT) in preimplantation embryos; this is regarded as a major landmark event in the zygotic genome activation (ZGA) process, indicating that ERVs play an active part in ZGA. Evolutionarily, the interaction between ERVs and hosts is mutually beneficial. The endogenization of retrovirus sequences rewires the gene regulatory network during ZGA, and ERV repression may lower germline fitness. Unfortunately, owing to various limitations of somatic cell nuclear transfer (SCNT) technology, both developmental arrest and ZGA abnormalities occur in a high percentage of cloned embryos, accompanied by ERV silencing, which may be caused by the activation failure of upstream ERV inducers. In this review, we discuss the functions and regulation of ERVs during the ZGA process and the feasibility of temporal control over ERVs in cloned embryos via exogenous double homeobox (DUX). We hypothesize that further accurate characterization of the ERV-rewired gene regulatory network during ZGA may provide a novel perspective on the development of preimplantation embryos.


2019 ◽  
Vol 48 (2) ◽  
pp. 879-894 ◽  
Author(s):  
Qian-Qian Sha ◽  
Ye-Zhang Zhu ◽  
Sen Li ◽  
Yu Jiang ◽  
Lu Chen ◽  
...  

Abstract An important event of the maternal-to-zygotic transition (MZT) in animal embryos is the elimination of a subset of the maternal transcripts that accumulated during oogenesis. In both invertebrates and vertebrates, a maternally encoded mRNA decay pathway (M-decay) acts before zygotic genome activation (ZGA) while a second pathway, which requires zygotic transcription, subsequently clears additional mRNAs (Z-decay). To date the mechanisms that activate the Z-decay pathway in mammalian early embryos have not been investigated. Here, we identify murine maternal transcripts that are degraded after ZGA and show that inhibition of de novo transcription stabilizes these mRNAs in mouse embryos. We show that YAP1-TEAD4 transcription factor-mediated transcription is essential for Z-decay in mouse embryos and that TEAD4-triggered zygotic expression of terminal uridylyltransferases TUT4 and TUT7 and mRNA 3′-oligouridylation direct Z-decay. Components of the M-decay pathway, including BTG4 and the CCR4-NOT deadenylase, continue to function in Z-decay but require reinforcement from the zygotic factors for timely removal of maternal mRNAs. A long 3′-UTR and active translation confer resistance of Z-decay transcripts to M-decay during oocyte meiotic maturation. The Z-decay pathway is required for mouse embryo development beyond the four-cell stage and contributes to the developmental competence of preimplantation embryos.


Genetics ◽  
2021 ◽  
Author(s):  
Megan M Colonnetta ◽  
Juan E Abrahante ◽  
Paul Schedl ◽  
Daryl M Gohl ◽  
Girish Deshpande

Abstract Embryonic patterning is critically dependent on zygotic genome activation (ZGA). In Drosophila melanogaster embryos, the pioneer factor Zelda directs ZGA, possibly in conjunction with other factors. Here we have explored novel involvement of Chromatin-Linked Adapter for MSL Proteins (CLAMP) during ZGA. CLAMP binds thousands of sites genome-wide throughout early embryogenesis. Interestingly, CLAMP relocates to target promoter sequences across the genome when ZGA is initiated. Although there is a considerable overlap between CLAMP and Zelda binding sites, the proteins display distinct temporal dynamics. To assess whether CLAMP occupancy affects gene expression, we analyzed transcriptomes of embryos zygotically compromised for either clamp or zelda and found that transcript levels of many zygotically-activated genes are similarly affected. Importantly, compromising either clamp or zelda disrupted the expression of critical segmentation and sex determination genes bound by CLAMP (and Zelda). Furthermore, clamp knockdown embryos recapitulate other phenotypes observed in Zelda-depleted embryos, including nuclear division defects, centrosome aberrations, and a disorganized actomyosin network. Based on these data, we propose that CLAMP acts in concert with Zelda to regulate early zygotic transcription.


2017 ◽  
Vol 42 (4) ◽  
pp. 316-332 ◽  
Author(s):  
David Jukam ◽  
S. Ali M. Shariati ◽  
Jan M. Skotheim

Sign in / Sign up

Export Citation Format

Share Document