tetraploid cotton
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 41)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaohong Zhang ◽  
Junjie Zhao ◽  
Xiangyuan Wu ◽  
Genhai Hu ◽  
Shuli Fan ◽  
...  

The KNOX (KNOTTED1-like homeobox) transcription factors play an important role in leaf, shoot apical meristem and seed development and respond to biotic and abiotic stresses. In this study, we analyzed the diversity and evolutionary history of the KNOX gene family in the genome of tetraploid cotton (Gossypium hirsutum). Forty-four putative KNOX genes were identified. All KNOX genes from seven higher plant species were classified into KNOXI, KNOXII, and KNATM clades based on a phylogenetic analysis. Chromosomal localization and collinearity analysis suggested that whole-genome duplication and a polyploidization event contributed to the expansion of the cotton KNOX gene family. Analyses of expression profiles revealed that the GhKNOX genes likely responded to diverse stresses and were involved in cotton growth developmental processes. Silencing of GhKNOX2 enhanced the salt tolerance of cotton seedlings, whereas silencing of GhKNOX10 and GhKNOX14 reduced seedling tolerance to salt stress. Silencing of GhSTM3 influenced the cotton flowering time and plant development. These findings clarify the evolution of the cotton KNOX gene family and provide a foundation for future functional studies of KNOX proteins in cotton growth and development and response to abiotic stresses.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanchao Yuan ◽  
Xinzhe Cao ◽  
Haijun Zhang ◽  
Chunying Liu ◽  
Yuxi Zhang ◽  
...  

Abstract Background Cotton is not only a major textile fiber crop but also a vital oilseed, industrial, and forage crop. Oleosins are the structural proteins of oil bodies, influencing their size and the oil content in seeds. In addition, the degradation of oleosins is involved in the mobilization of lipid and oil bodies during seed germination. However, comprehensive identification and the systematic analysis of the Oleosin gene (OLEOs) family have not been conducted in cotton. Results An in-depth analysis has enabled us to identify 25 and 24 OLEOs in tetraploid cotton species G. hirsutum and G. barbadense, respectively, while 12 and 13 OLEOs were identified in diploid species G. arboreum and G. raimondii, respectively. The 74 OLEOs were further clustered into three lineages according to the phylogenetic tree. Synteny analysis revealed that most of the OLEOs were conserved and that WGD or segmental duplications might drive their expansion. The transmembrane helices in GhOLEO proteins were predicted, and three transmembrane models were summarized, in which two were newly proposed. A total of 24 candidate miRNAs targeting GhOLEOs were predicted. Three highly expressed oil-related OLEOs, GH_A07G0501 (SL), GH_D10G0941 (SH), and GH_D01G1686 (U), were cloned, and their subcellular localization and function were analyzed. Their overexpression in Arabidopsis increased seed oil content and decreased seed germination rates. Conclusion We identified OLEO gene family in four cotton species and performed comparative analyses of their relationships, conserved structure, synteny, and gene duplication. The subcellular localization and function of three highly expressed oil-related OLEOs were detected. These results lay the foundation for further functional characterization of OLEOs and improving seed oil content.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wenyuan Liu ◽  
Yanjia Lv ◽  
Xiaoyue Li ◽  
Zongqin Feng ◽  
Lichen Wang

Abstract Background Tetraploid cotton plants serve as prime natural fiber source for the textile industry. Although various omics studies have revealed molecular basis for fiber development, a better understanding of transcriptional regulation mechanism regulating lint fiber initiation is necessary to meet global natural fiber demand. Results Here, we aimed to perform transcriptome sequencing to identify DEGs (differentially expressed genes) in ovules of the cotton variety Xu142 and its fibreless mutant Xu142fl during early lint fiber initiation period. Totally, 5516 DEGs including 1840 upregulated and 3676 downregulated were identified. GO enrichment analysis revealed that the downregulated DEGs were mainly associated with biological processes such as transcription related biosynthesis and metabolism, organic cyclic compound biosynthesis and metabolism, photosynthesis, and plant cell wall organization, with molecular functions involving transcription related binding, organic cyclic compound binding, and dioxygenase activity, while the upregulated DEGs were associated with DNA replication and phospholipid biosynthetic related processes. Among the 490 DEGs annotated as transcription factor genes, 86.5% were downregulated in the mutant including the Malvaceae-specific MMLs, expression patterns of which were confirmed during the central period of lint fiber initiation. Investigation of the 16 genes enriched in the cell wall organization revealed that 15 were EXPA coding genes. Conclusions Overall, our data indicate that lint fiber initiation is a complicated process involving cooperation of multiple transcription factor families, which might ultimately lead to the reorganization of the cell wall and terminated cell division of the differentiating fiber initials.


2021 ◽  
Vol 12 ◽  
Author(s):  
Margaret L. Shiraku ◽  
Richard Odongo Magwanga ◽  
Xiaoyan Cai ◽  
Joy Nyangasi Kirungu ◽  
Yanchao Xu ◽  
...  

The acyl-coenzyme A oxidase 3 (ACX3) gene involved in the β-oxidation pathway plays a critical role in plant growth and development as well as stress response. Earlier on, studies focused primarily on the role of β-oxidation limited to fatty acid breakdown. However, ACX3 peroxisomal β-oxidation pathways result in a downstream cascade of events that act as a transduction of biochemical and physiological responses to stress. A role that is yet to be studied extensively. In this study, we identified 20, 18, 22, 23, 20, 11, and 9 proteins in Gossypium hirsutum, G. barbadense, G. tomentosum, G. mustelinum, G. darwinii, G. arboretum, and G. raimondii genomes, respectively. The tetraploid cotton genome had protein ranging between 18 and 22, while diploids had between 9 and 11. After analyzing the gene family evolution or selection pressure, we found that this gene family undergoes purely segmental duplication both in diploids and tetraploids. W-Box (WRKY-binding site), ABRE, CAAT–Box, TATA-box, MYB, MBS, LTR, TGACG, and CGTCA-motif are abiotic stress cis-regulatory elements identified in this gene family. All these are the binding sites for abiotic stress transcription factors, indicating that this gene is essential. Genes found in G. hirsutum showed a clear response to drought and salinity stress, with higher expression under drought and salt stress, particularly in the leaf and root, according to expression analysis. We selected Gh_DO1GO186, one of the highly expressed genes, for functional characterization. We functionally characterized the GhACX3 gene through overexpression and virus-induced gene silencing (VIGS). Overexpression of this gene enhanced tolerance under stress, which was exhibited by the germination assay. The overexpressed seed growth rate was faster relative to control under drought and salt stress conditions. The survival rate was also higher in overexpressed plants relative to control plants under stress. In contrast, the silencing of the GhACX3 gene in cotton plants resulted in plants showing the stress susceptibility phenotype and reduced root length compared to control. Biochemical analysis also demonstrated that GhACX3-silenced plants experienced oxidative stress while the overexpressed plants did not. This study has revealed the importance of the ACX3 family during stress tolerance and can breed stress-resilient cultivar.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fuguang LI

AbstractRecently, Du and his team revealed the genomic basis of population differentiation and geographical distribution of Chinese cultivated G. hirsutum (upland cotton). Our previous study showed that the large-scale inversions on chromosome A08 are widely distributed in a core collection of upland cotton and have driven population differentiation in G. hirsutum. With 3248 tetraploid cotton germplasms, He et al. identified new inversions on chromosome A06, and found these inversions together with those in chromosome A08 caused subpopulation differentiation Chinese cultivars that were highly consistent with their corresponding geographical distributions. This work provides new perspectives to further understand environmental adaptation of Chinese upland cotton germplasms.


2021 ◽  
Author(s):  
Renhai Peng ◽  
Yanchao Xu ◽  
Zhen Liu ◽  
Liyang Chen ◽  
Zhongli Zhou ◽  
...  

Abstract Allotetraploid species of cotton (Gossypium) represent a model system for the study of plant polyploidy, molecular evolution and domestication. In this study three high-quality draft assemblies of tetraploid cottons are presented, comprising one early form of domesticated Gossypium hirsutum (AD1-genome, Gh), i.e., Gossypium hirsutum race punctatum (GhP), and two recently described wild species of tetraploid cotton, G. ekmanianum (AD6, Ge) and G. stephensii (AD7, Gs). Using comparative phylogenomics, we confirm a monophyletic origin of tetraploid Gossypium and provide a dated whole-genome level perspective for the evolution of the clade. Recombination and patterns of selection are asymmetric between the two co-resident genomes in the allopolyploid nucleus. Considerable gene structural variation occurs widely within homoeologous genomes and between heterologous genomes during evolution and domestication. Despite few large-scale chromosomal structure variations among tetraploid cotton, frequent homoeologous exchanges between subgenomes in all species have contributed to diversity and asymmetrically between subgenomes. Abiotic and biotic adaptive evolution was driven by various evolutionary forces, leading to transcriptome change and gene family expansion. Our study marks a milestone in modern polyploid crop research, completing genome sequencing for all species of polyploid Gossypium, and will facilitate a better understanding of the genomic landscape and crop improvement dynamics of polyploids.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nasreen Bano ◽  
Shafquat Fakhrah ◽  
Chandra Sekhar Mohanty ◽  
Sumit Kumar Bag

Tubby-like proteins (TLPs) possess a highly conserved closed β barrel tubby domain at C-terminal and N-terminal F-box. The role of TLP gene family members has been widely discussed in numerous organisms; however, the detailed genome-wide study of this gene family in Gossypium species has not been reported till date. Here, we systematically identified 105 TLP gene family members in cotton (Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum, and Gossypium barbadense) genomes and classified them into eight phylogenetic groups. Cotton TLP12 gene family members clustered into two groups, 4 and 8. They experienced higher evolutionary pressure in comparison to others, indicating the faster evolution in both diploid as well as in tetraploid cotton. Cotton TLP gene family members expanded mainly due to segmental duplication, while only one pair of tandem duplication was found in cotton TLPs paralogous gene pairs. Subsequent qRT-PCR validation of seven putative key candidate genes of GhTLPs indicated that GhTLP11A and GhTLP12A.1 genes were highly sensitive to salt and drought stress. The co-expression network, pathways, and cis-regulatory elements of GhTLP11A and GhTLP12A.1 genes confirmed their functional importance in salt and drought stress responses. This study proposes the significance of GhTLP11A and GhTLP12A.1 genes in exerting control over salt and drought stress responses in G. hirsutum and also provides a reference for future research, elaborating the biological roles of G. hirsutum TLPs in both stress responses.


Author(s):  
Nuohan Wang ◽  
Qiang Ma ◽  
Man Wu ◽  
Wenfeng Pei ◽  
Jikun Song ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254111
Author(s):  
Zhaoguo Li ◽  
Zhen Liu ◽  
Yangyang Wei ◽  
Yuling Liu ◽  
Linxue Xing ◽  
...  

The enzyme myo-inositol oxygenase (MIOX) catalyzes the myo-inositol into glucuronic acid. In this study, 6 MIOX genes were identified from all of the three diploid cotton species (Gossypium arboretum, Gossypium herbaceum and Gossypium raimondii) and Gossypioides kirkii, 12 MIOX genes were identified from two domesticated tetraploid cottons Gossypium hirsutum, Gossypium barbadense, and 11 MIOX genes were identified from three wild tetraploid cottons Gossypium tomentosum, Gossypium mustelinum and Gossypium darwinii. The number of MIOX genes in tetraploid cotton genome is roughly twice that of diploid cotton genome. Members of MIOX family were classified into six groups based on the phylogenetic analysis. Integrated analysis of collinearity events and chromosome locations suggested that both whole genome duplication and segmental duplication events contributed to the expansion of MIOX genes during cotton evolution. The ratios of non-synonymous (Ka) and synonymous (Ks) substitution rates revealed that purifying selection was the main force driving the evolution of MIOX genes. Numerous cis-acting elements related to light responsive element, defense and stress responsive element were identified in the promoter of the MIOX genes. Expression analyses of MIOX genes based on RNA-seq data and quantitative real time PCR showed that MIOX genes within the same group shared similar expression patterns with each other. All of these results provide the foundation for further study of the biological functions of MIOX genes in cotton environmental adaptability.


2021 ◽  
Author(s):  
Wenyuan Liu ◽  
Yanjia Lv ◽  
Xiaoyue Li ◽  
Zongqin Feng ◽  
Lichen Wang

Abstract Background Tetraploid cotton plants serve as prime natural fiber source for the textile industry. Although various omics studies have revealed molecular basis for fiber development, a better understanding of transcriptional regulation mechanism regulating lint fiber initiation is necessary to meet global natural fiber demand. Conclusions Here, we aimed to perform transcriptome sequencing to identify DEGs (differentially expressed genes) in ovules of the cotton variety Xu142 and its fibreless mutant Xu142fl during early lint fiber initiation period. Totally, 5516 DEGs including 1840 upregulated and 3676 downregulated were identified. GO enrichment analysis revealed that the downregulated DEGs mainly associated with biological processes such as transcription related biosynthesis and metabolism, organic cyclic compound biosynthesis and metabolism, photosynthesis, and plant cell wall organization, with molecular functions involving transcription related binding, organic cyclic compound binding, and dioxygenase activity, while the upregulated DEGs were associated with DNA replication and phospholipid biosynthetic related processes. Among the 490 DEGs annotated as transcription factor genes 86.5% were downregulated in the mutant including the Malvaceae-specific MMLs, expression patterns of which were confirmed during the central period of lint fiber initiation. Investigation of the 20 genes enriched in the cell wall organization revealed that 17 were EXPA coding genes. Overall, we suggest that lint fiber initiation is a complicated process involving cooperation of multiple transcription factor families, which might ultimately lead to the reorganization of the cell wall and terminated cell division of the differentiating fiber initials.


Sign in / Sign up

Export Citation Format

Share Document