scholarly journals The role of ABC transporters in kin recognition inArabidopsis thaliana

2011 ◽  
Vol 6 (8) ◽  
pp. 1154-1161 ◽  
Author(s):  
Meredith L. Biedrzycki ◽  
Venkatachalam L ◽  
Harsh P. Bais
2018 ◽  
Vol 17 (10) ◽  
pp. 728-735 ◽  
Author(s):  
Xiaolin Deng ◽  
Yangmei Xie ◽  
Yinghui Chen

Background & Objective: Epilepsy is a common and serious chronic neurological disorder that is mainly treated with antiepileptic drugs. Although current antiepileptic drugs used in clinical practice have advanced to the third generation, approximately one-third of patients are refractory to these treatments. More efficacious treatments for refractory epilepsy are therefore needed. A better understanding of the mechanism underlying refractory epilepsy is likely to facilitate the development of a more effective therapy. The abnormal expression and/or dysfunction of efflux transporters, particularly ABC transporters, might contribute to certain cases of refractory epilepsy. Inflammation in the brain has recently been shown to regulate the expression and/or function of ABC transporters in the cerebral vascular endothelial cells and glia of the blood-brain barrier by activating intracellular signalling pathways. Conclusion: Therefore, in this review, we will briefly summarize recent research advances regarding the possible role of neuroinflammation in regulating ABC transporter expression in epilepsy.


1996 ◽  
Vol 109 (7) ◽  
pp. 1975-1989 ◽  
Author(s):  
T. Nilsson ◽  
C. Rabouille ◽  
N. Hui ◽  
R. Watson ◽  
G. Warren

Using a series of chimeric and truncated N-acetylglucosaminyltransferase I (NAGT I) molecules we have shown that part of the lumenal stalk region is both necessary and sufficient for kin recognition of mannosidase II and retention in the Golgi stack. The membrane-spanning domain was not required for retention, but replacing part or all of this domain with leucine residues did have a dramatic effect on Golgi morphology. In stable cell lines, stacked cisternae were replaced by tubulo-vesicular clusters containing the mutated NAGT I. The loss of stacked cisternae was proportional to the number of leucines used to replace the membrane-spanning domain.


2002 ◽  
Vol 64 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Andrés López-Sepulcre ◽  
Hanna Kokko

2017 ◽  
pp. 133-153
Author(s):  
Anjana Devi Tangutur ◽  
Kommalapati Vamsi Krishna ◽  
Amrita Dutta Chowdhury ◽  
Neelamraju Sarla

2021 ◽  
Author(s):  
Jared S. Katzeff ◽  
Woojin Scott Kim

Abstract ATP-binding cassette (ABC) transporters are one of the largest groups of transporter families in humans. ABC transporters mediate the translocation of a diverse range of substrates across cellular membranes, including amino acids, nucleosides, lipids, sugars and xenobiotics. Neurodegenerative diseases are a group of brain diseases that detrimentally affect neurons and other brain cells and are usually associated with deposits of pathogenic proteins in the brain. Major neurodegenerative diseases include Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. ABC transporters are highly expressed in the brain and have been implicated in a number of pathological processes underlying neurodegenerative diseases. This review outlines the current understanding of the role of ABC transporters in neurodegenerative diseases, focusing on some of the most important pathways, and also suggests future directions for research in this field.


Sign in / Sign up

Export Citation Format

Share Document