scholarly journals Downregulation Enhanced Green Fluorescence Protein Gene Expression by RNA Interference in Mammalian Cells

RNA Biology ◽  
2004 ◽  
Vol 1 (1) ◽  
pp. 73-76 ◽  
Author(s):  
Min Zhang ◽  
Chun-Xue Bai ◽  
Xin Zhang ◽  
Jie Chen ◽  
Ling Mao ◽  
...  
Reproduction ◽  
2009 ◽  
Vol 137 (5) ◽  
pp. 793-801 ◽  
Author(s):  
Yue-Mao Zheng ◽  
Hui-Ying Zhao ◽  
Xiao-E Zhao ◽  
Fu-Sheng Quan ◽  
Song Hua ◽  
...  

We assessed the developmental ability of embryos cloned from porcine neural stem (NS) cells, amniotic fluid-derived stem (AFS) cells, fetal fibroblast cells, adult fibroblast, and mammary gland epithelial cells. The five cell lines were transfected with enhanced green fluorescence protein gene respectively using lipofection. NS and AFS cells were induced to differentiate in vitro. Stem cells and their differentiated cells were harvested for analysis of the markers using RT-PCR. The five cell lines were used for nuclear transfer. The two-cell stage-cloned embryos derived from each cell line were transferred into the oviducts of surrogate mothers. The results showed that both NS and AFS cells expressed POU5F1, THY1 and SOX2, and they were both induced to differentiate into astrocyte (GFAP+), oligodendrocyte (GalC+), neuron (NF+, ENO2+, and MAP2+), adipocyte (LPL+ and PPARG-D+), osteoblast (osteonectin+ and osteocalcin+), myocyte (MYF6+ and MYOD+), and endothelium (PECAM1+, CD34+, CDH5+, and NOS3+) respectively. Seven cloned fetuses (28 days and 32 days) derived from stem cells were obtained. The in vitro developmental ability (morula–blastocyst rate was 28.26–30.07%) and in vivo developmental ability (pregnancy rate were 1.67–2.17%) of the embryos cloned from stem cells were higher (P<0.05) than that of the embryos cloned from somatic cells (morula–blastocyst rate was 16.27–19.28% and pregnancy rate was 0.00%), which suggests that the undifferentiated state of the donor cells increases cloning efficiency.


2001 ◽  
Vol 67 (4) ◽  
pp. 273-280 ◽  
Author(s):  
Teruo NONOMURA ◽  
Yoshinori MATSUDA ◽  
Mikako TAKASUGI ◽  
Takashi OOTANI ◽  
Tomoya HASEGAWA ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Min Xu ◽  
Yue-Ying Jiao ◽  
Yuan-Hui Fu ◽  
Nan Jiang ◽  
Yuan-Bo Zheng ◽  
...  

Human respiratory syncytial virus (RSV) is the single most important cause of lower respiratory tract disease in infants and young children and a major viral agent responsible for respiratory tract disease in immunosuppressed individuals and the elderly, but no vaccines and antiviral drugs are available. Herein the recombinant RSV (rRSV) encoding enhanced green fluorescence protein (EGFP, rRSV-EGFP) was constructed and the potential for screening anti-RSV drugs was investigated. The recombinant plasmid of pBRATm-rRSV-EGFP, containing T7 transcription cassette composed of T7 promoter, RSV antigenomic cDNA with EGFP gene, HDV ribozyme (δ), and T7 terminator in the order of 5′ to 3′, was constructed and cotransfected into BHK/T7-9 cells together with helper plasmids encoding N, P, L, and M2-1 gene, respectively. The rescued rRSV-EGFP was confirmed by increasing expression of EGFP over blind passages and by RT-PCR. rRSV-EGFP was comparable to the other two recombinant RSVs encoding red fluorescent protein (RFP, rRSV-RFP) or luciferase (Luc, rRSV-Luc) in the growth kinetic, and there was a difference in sensitivity between them for screening anti-RSV agents based on infection of HEp-2 cells. The EGFP-encoding rRSV has been constructed and rescued successfully and has the potential for high-throughput anti-RSV drug screening in vitro.


Sign in / Sign up

Export Citation Format

Share Document