scholarly journals Coaxial Electrospinning as a Process to Engineer Biodegradable Polymeric Scaffolds as Drug Delivery Systems for Anti-Inflammatory and Anti- Thrombotic Pharmaceutical Agents

Author(s):  
Alexandros Repanas ◽  
Willem F Wolkers
2020 ◽  
Author(s):  
Umut Ugur Ozkose ◽  
Sevgi Gulyuz ◽  
Melek Parlak Khalily ◽  
Salih Ozcubukcu ◽  
Asuman Bozkır ◽  
...  

To optimize the therapeutic effect of pharmaceutical agents, drug delivery systems tailored from FDA-approved polymers like poly(L-lactide) (PLA) is an effective strategy. Because of their hydrophobic character, these systems greatly suffer from reduced circulation time thus, amphiphilic block copolymers became favourable to overcome this limitation. Of them, poly(oxazoline)-b-poly(L-lactide) are of choice as poly(oxazoline) (PEtOx) is compatibile, biodegradable, while exhibiting minimum cytotoxicity. To tailor selective drug targeting drug delivery systems, whereby their selectivity for tumour tissues is maximised, these polymers should be decorated with so-called tumour-homing agents, such as antibodies, peptides and so forth. To this respect, we designed a new block copolymer, allyl-poly(2-ethyl-2-oxazoline)-b-poly(L-lactide) allyl-(PEtOx-b-PLA) and its subsequent conjugation to tumour-homing peptides, peptide-18 and peptide-563 at the terminal position. In this manuscript, we report our synthetic route to obtain this building block and its conjugation to tumour-homing agents.


Author(s):  
Amaldoss M.J. Newton ◽  
Prabakaran Lakshmanan

Objective: A number of natural polymer-based drug delivery systems targeting the colon are reported for different applications. Most of the research is based on the class of natural polymers such as polysaccharides. This study compares the anti-inflammatory effect of different polysaccharide based tablets on IBD when a drug carrier is targeted to the colon as matrix and coated systems. Methods: The TNBS induced IBD Wistar rats were used as a model for the study. The microscopic and macroscopic parameters were studied in detail. Almost all the important IBD parameters were reported in this work. Results: The results demonstrated that the polysaccharides are efficient in carrying the drugs to the colon. Reduction in the level of ulcer index (UI), Myeloperoxidase (MPO), and Malondialdehyde MDA, confirmed the inhibitory activity on the development of Reactive oxygen species (ROS). The increased level of Tumor necrosis factor (TNFα) an expression of colonic inducible nitric oxide synthase (iNOS) was lowered in treatments as compared to TNBS control. Conclusion: The different polymer-based mesalamine (DPBM) confirmed the efficient anti- inflammatory activity on IBD induced rats. The increased level of glutathione (GSH), and superoxide dismutase (SOD) also confirmed the effective anti-inflammatory effect. A significant decrease in the ulcer score and ulcer area was reported. The investigation revealed that chitosan is superior to pectin in IBD treatment likewise polysaccharide-based matrix systems are superior to the coated system.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Nicholas C. Obitte ◽  
Kenneth C. Ofokansi ◽  
Franklin C. Kenechukwu

In this study, goat fat (Capra hircus) and melon oil were extracted and used to formulate self-nanoemulsifying drug delivery systems (SNEDDS) based on either goat fat alone or its admixture with melon oil by employing escalating ratios of oil(s), surfactant blend (1 : 1 Tween 60 and Tween 80), and cosurfactant (Span 85), with or without carbosil, a glidant, for the delivery of indomethacin. The formulations were encapsulated in hard gelatin capsules and then assessed using isotropicity test, aqueous dilution stability and precipitation propensity, absolute drug content, emulsification time, in vitro drug release, and anti-inflammatory activity. The SNEDDS exhibited low precipitation propensity and excellent stability on copious dilution, as well as high drug release in vitro and in vivo. The inhibition produced by the SNEDDS was comparable to that of indomethacin injection (positive control) for much of the 5 h test period, indicating a high degree of bioavailability of the administered SNEDDS. The absolute drug contents and emulsification times fell within narrow limits. This study has shown that a 1 : 1 ratio of melon oil and goat fat could confer favourable properties with respect to drug release and anti-inflammatory activity on SNEDDS for the delivery of indomethacin, thus encouraging further development of the formulations.


2018 ◽  
Vol Volume 13 ◽  
pp. 6585-6602 ◽  
Author(s):  
Amal Ahmed Eltobshi ◽  
Elham Abdelmonem Mohamed ◽  
Galal Mahmoud Abdelghani ◽  
Ahmed Talaat Nouh

2016 ◽  
Vol 18 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Bistra Kostova ◽  
Elena Kamenska ◽  
Dilyana Georgieva ◽  
Konstantin Balashev ◽  
Dimitar Rachev ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-37 ◽  
Author(s):  
Ravi Kant Upadhyay

Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.


Sign in / Sign up

Export Citation Format

Share Document