scholarly journals Pathogenesis of Alzheimer's Disease: Role of Amyloid-beta and Hyperphosphorylated Tau Protein

Author(s):  
Rabia Sajjad ◽  
Rawaba Arif ◽  
A A Shah ◽  
I Manzoor ◽  
G Mustafa
2017 ◽  
Vol 8 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Marta Bolós ◽  
Juan Ramón Perea ◽  
Jesús Avila

AbstractAlzheimer’s disease (AD) is a neurodegenerative condition characterized by the formation of amyloid-β plaques, aggregated and hyperphosphorylated tau protein, activated microglia and neuronal cell death, ultimately leading to progressive dementia. In this short review, we focus on neuroinflammation in AD. Specifically, we describe the participation of microglia, as well as other factors that may contribute to inflammation, in neurodegeneration.


2021 ◽  
Vol 67 (1) ◽  
pp. 57-66
Author(s):  
V.V. Ganzha ◽  
◽  
E.A. Lukyanetz ◽  

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by memory loss and multiple cognitive impairments. Several decades of intensive research have shown that multicellular changes are involved in AD’s development and progression, including mitochondrial damage, synaptic dysfunction, formation and accumulation of beta-amyloid (Aβ), formation and accumulation of hyperphosphorylated tau protein, and loss of neurons in patients with this disease. Among them, mitochondrial dysfunction and synaptic damage are the primary manifestations in the disease process. Recent studies have also shown that defective mitophagy caused by Aβ and tau protein are the main indicators in AD’s pathogenesis. This review includes an overview of recent researches on the role of mitochondria in AD development. The review summarizes several aspects of mitochondrial dysfunction, including abnormal mitochondrial dynamics, changes in mitochondrial DNA, and calcium dyshomeostasis in AD pathogenesis


2021 ◽  
Author(s):  
Harish Kumar ◽  
Amitava Chakrabarti ◽  
Phulen Sarma ◽  
Manish Modi ◽  
Dibyajyoti Banerjee ◽  
...  

Abstract Background: Insulin resistance in brain plays a critical role in the pathogenesis of Alzheimer's disease (AD). Metformin is a blood brain barrier crossing anti-diabetic insulin-sensitizer drug. Current study has evaluated the therapeutic and mechanistic role of conventional as well as solid lipid nanoformulation (SLN) of metformin in intracerebro ventricular (ICV) Aβ (1-42) rat-model of AD. Methods: SLN-metformin was prepared by the micro-emulsification method and further evaluated by zetasizer and scanning electron-microscopy. In the animal experimental phase, AD was induced by bilateral ICV injection of Aβ using stereotaxic technique, whereas control group (sham) received ICV-NS. 14 days post-model induction, ICV- Aβ treated rats were further divided into 5 groups: disease control (no treatment), Metformin dose of (50mg/kg, 100mg/kg and 150 mg/kg), SLN of metformin 50mg/kg and memantine 1.8mg/kg (positive-control). Animals were tested for cognitive performance (in EPM, MWM) after 21 days of therapy, and then sacrificed. Brain homogenate was evaluated using ELISA for (Aβ (1-42), hyperphosphorylated tau, pAKTser473, GSK-3β, p-ERK,) and HPLC (metformin level). Brain histopathology was used to evaluate neuronal injury score (H&E) and Bcl2 and BAX (IHC). Results: The average size of SLN-metformin was <200 nm and was of spherical in shape with 94.08% entrapment efficiency. Compared to sham, the disease-control group showed significantly higher (p≤0.05) memory impairment (in MWM and EPM), higher hyperphosphorylated tau, Aβ (1-42), and Bax and lower Bcl-2 expression. Metformin was detectable in brain. Treatment with metformin and its SLN form significantly decreased the memory impairment as well as decreased the expression of hyperphosphorylated tau, Aβ(1-42), Bax expression and increased expression of Bcl-2 in brain. AKT-ERK-GSK3β-Hyperphosphorylated tau pathway can be implicated in the protective efficacy of metformin. Conclusion: Both metformin and SLN metformin is found to be effective as therapeutic agent in ICV-AB rat model of AD. AKT-ERK-GSK3β-Hyperphosphorylated tau pathway is found to be involved in the protective efficacy of metformin.


Sign in / Sign up

Export Citation Format

Share Document