scholarly journals Microsatellite-Based Analysis of Genetic Diversity and Population Structure of Rainbow Trout (Oncorhynchus mykiss) Cultured in Ukraine

2020 ◽  
Vol 5 (1) ◽  
pp. 29-39
Author(s):  
Оlena Bielikova ◽  
Serhii Тarasjuk ◽  
Antonina Mruk ◽  
Olga Zaloilo ◽  
Alexander Didenko

The genetic structure of rainbow trout farmed in Ukraine were characterized based on microsatellite loci. The selected set of SSR-markers (Simple-sequence repeatsmarkers) had a high degree of polymorphism that allowed determining the specificity of each local stock (average PIC value = 0.785 ± 0.034). The microsatellite analysis of rainbow trout from the studied stocks showed a high level of genetic diversity (uHe = 0.825 ± 0.030, PIC = 0.785 ± 0.034, I = 1.836 ± 0.127). The level of allelic diversity of the selected loci was high, where the average number of alleles per locus was 7.833, the effective number of alleles per locus was 5.687. The range of amplicon sizes of the studied loci and private alleles for each local group was determined. The cluster analysis showed the presence of three clusters. The range of genetic variability was presented in the graphical interpretation of the principal coordinates analysis (PCoA). Based on unbiased genetic distances, the Kharkiv and Transcarpathian local stocks were found to be the closest, while the Chernivtsi stock was the most distant from them.

Biologija ◽  
2021 ◽  
Vol 67 (3) ◽  
Author(s):  
Romualdas Lapickis ◽  
Loreta Griciuvienė ◽  
Asta Aleksandravičienė ◽  
Indrė Lipatova ◽  
Algimantas Paulauskas

Large numbers of different scientific studies are conducted to preserve the breeds and improve the existing ones by introducing the variability of the plate genes, which best shows the phenotypic characteristics that can improve the health of dairy cattle and the quality of their production. The main purpose of this study was to perform an analysis of genetic variability of Lithuanian cattle breeds. Three subpopulation groups were studied: Lithuanian Black and White (95 individuals), Lithuanian Red (49), and Lithuanian White and Red (48). Bovine genetic material was genotyped using a total of 11 fluorescent microsatellite primers to estimate genetic variability. All loci presented a high degree of polymorphism and a total of 292 different alleles (Na) were detected. Thirty-two private alleles were detected in all evaluated subpopulations. After completing pairwise population assignment, which is based on the distribution of allelic frequencies, three populations showed the tendency to group into three separate clusters. However, the performed Principal Coordinates Analysis (PCoA), which is based on genetic distances, showed no anticipated clear grouping. Bayesian structure analysis revealed three genetic clusters. Analysis of FST (0.001–0.027) and Nei genetic distance (0.029–0.084) revealed that the genetic diversity of inter subpopulation in cattle groups was estimated to be lower than the genetic diversity of intra subpopulation.


2018 ◽  
Vol 16 (5) ◽  
pp. 469-477 ◽  
Author(s):  
Georgios F. Tsanakas ◽  
Photini V. Mylona ◽  
Katerina Koura ◽  
Anthoula Gleridou ◽  
Alexios N. Polidoros

AbstractThe Greek lentil landrace ‘Eglouvis’ is cultivated continuously at the Lefkada island for more than 400 years. It has great taste, high nutritional value and high market price. In the present study, we used morphological and molecular markers to estimate genetic diversity within the landrace. Morphological analysis was based on characteristics of the seed. Molecular analysis was performed using simple sequence repeat (SSR) molecular markers in a high-resolution melting (HRM) approach. ‘Samos’ and ‘Demetra’, two of the most widely cultivated commercial lentil varieties in Greece, were used for comparisons. Morphological analysis was performed with 584 seeds randomly selected from a lot. Analysis of seed dimensions and colour distributed the samples in different categories and highlighted the phenotypic variability in ‘Eglouvis’ lentil seeds. Genetic variability was estimated from 91 individual DNA samples with 11 SSR markers using HRM analysis. Genotyping was based upon the shape of the melting curves and the difference plots; all polymerase chain reaction products were also run on agarose gels. Genetic distances of individuals and principal coordinates analysis suggested that ‘Eglouvis’ landrace has a unique genetic background that significantly differs from ‘Samos’ and ‘Demetra’ and no overlapping could be detected. Genetic variability within the ‘Eglouvis’ landrace can be considered in targeted breeding programs as a significant phytogenetic resource of lentils in Greece.


HortScience ◽  
2015 ◽  
Vol 50 (8) ◽  
pp. 1143-1147 ◽  
Author(s):  
Benard Yada ◽  
Gina Brown-Guedira ◽  
Agnes Alajo ◽  
Gorrettie N. Ssemakula ◽  
Robert O.M. Mwanga ◽  
...  

Genetic diversity is critical in sweetpotato improvement as it is the source of genes for desired genetic gains. Knowledge of the level of genetic diversity in a segregating family contributes to our understanding of the genetic diversity present in crosses and helps breeders to make selections for population improvement and cultivar release. Simple sequence repeat (SSR) markers have become widely used markers for diversity and linkage analysis in plants. In this study, we screened 405 sweetpotato SSR markers for polymorphism on the parents and progeny of a biparental cross of New Kawogo × Beauregard cultivars. Thereafter, we used the informative markers to analyze the diversity in this population. A total of 250 markers were polymorphic on the parents and selected progeny; of these, 133 were informative and used for diversity analysis. The polymorphic information content (PIC) values of the 133 markers ranged from 0.1 to 0.9 with an average of 0.7, an indication of high level of informativeness. The pairwise genetic distances among the progeny and parents ranged from 0.2 to 0.9, and they were grouped into five main clusters. The 133 SSR primers were informative and are recommended for use in sweetpotato diversity and linkage analysis.


2014 ◽  
Vol 12 (S1) ◽  
pp. S87-S90 ◽  
Author(s):  
Zhenbin Hu ◽  
Guizhen Kan ◽  
Guozheng Zhang ◽  
Dan Zhang ◽  
Derong Hao ◽  
...  

To evaluate the genetic diversity (GD) of wild and cultivated soybeans and determine the genetic relationships between them, in this study, 127 wild soybean accessions and 219 cultivated soybean accessions were genotyped using 74 simple sequence repeat (SSR) markers. The results of the study revealed that the GD of the wild soybeans exceeded that of the cultivated soybeans. In all, 924 alleles were detected in the 346 soybean accessions using 74 SSRs, with an average of 12.49 alleles per locus. In the 219 cultivated soybean accessions, 687 alleles were detected, with an average of 9.28 alleles per locus; in the 127 wild soybean accessions, 835 alleles were detected, with an average of 11.28 alleles per locus. We identified 237 wild-soybean-specific alleles and 89 cultivated-soybean-specific alleles in the 346 soybean accessions, and these alleles accounted for 35.28% of all the alleles in the sample. Principal coordinates analysis and phylogenetic analysis based on Nei's genetic distance indicated that all the accessions could be classified into two major clusters, corresponding to wild and cultivated soybeans. These results will increase our understanding of the genetic differences and relationships between wild and cultivated soybeans and provide information to develop future breeding strategies to improve soybean yield.


2019 ◽  
Vol 62 (1) ◽  
pp. 305-312
Author(s):  
Kairat Dossybayev ◽  
Zarina Orazymbetova ◽  
Aizhan Mussayeva ◽  
Naruya Saitou ◽  
Rakhymbek Zhapbasov ◽  
...  

Abstract. A total of 75 individuals from five sheep populations in Kazakhstan were investigated based on 12 STR (short tandem repeat, also known as microsatellite) markers in order to study their genetic structure and phylogenetic relationship based on genetic distances. These sheep had a high level of genetic diversity. In total, 163 alleles were found in all the populations using 12 microsatellite loci. The mean number of alleles, effective number of alleles, and polymorphism information content (PIC) values per loci were 13.4, 5.9, and 0.78, respectively. Comparing the allelic diversity between the populations, the highest genetic diversity was observed in the Edilbay-1 sheep breed (8.333±0.644), and the lowest parameter was for Kazakh Arkhar-Merino (7.083±0.633). In all populations, there is a deficiency of heterozygosity. The largest genetic diversity was found in loci INRA023 and CSRD247 with 16 alleles, and the smallest polymorphism was noted for the locus D5S2 with 8 alleles. The level of observed heterozygosity was in the range 0.678±0.051 for Kazakh Arkhar-Merino and 0.767±0.047 for Kazakh fat-tailed coarse wool. The expected heterozygosity level range was from 0.702±0.033 for Kazakh Arkhar-Merino to 0.777±0.023 for Edilbay-1. When 12 microsatellite loci are compared, the OarFCB20 locus showed the highest level of genetic variability. Excess of heterozygosity was observed at three loci; MAF065, McM042, and OarFCB20. The highest genetic distance was observed between Kazakh Arkhar-Merino and Edilbay-1, whereas the genetic distance between Edilbay-1 and Edilbay-2 is the smallest using Nei's standard genetic distance. The Edilbay-1 sheep breed possesses the largest genetic diversity among these five populations.


Genome ◽  
2002 ◽  
Vol 45 (6) ◽  
pp. 1095-1106 ◽  
Author(s):  
I A Matus ◽  
P M Hayes

Genetic diversity can be measured by several criteria, including phenotype, pedigree, allelic diversity at marker loci, and allelic diversity at loci controlling phenotypes of interest. Abundance, high level of polymorphism, and ease of genotyping make simple sequence repeats (SSRs) an excellent molecular marker system for genetics diversity analyses. In this study, we used a set of mapped SSRs to survey three representative groups of barley germplasm: a sample of crop progenitor (Hordeum vulgare subsp. spontaneum) accessions, a group of mapping population parents, and a group of varieties and elite breeding lines. The objectives were to determine (i) how informative SSRs are in these three sets of barley germplasm resources and (ii) the utility of SSRs in classifying barley germplasm. A total of 687 alleles were identified at 42 SSR loci in 147 genotypes. The number of alleles per locus ranged from 4 to 31, with an average of 16.3. Crop progenitors averaged 10.3 alleles per SSR locus, mapping population parents 8.3 alleles per SSR locus, and elite breeding lines 5.8 alleles per SSR locus. There were many exclusive (unique) alleles. The polymorphism information content values for the SSRs ranged from 0.08 to 0.94. The cluster analysis indicates a high level of diversity within the crop progenitors accessions and within the mapping population parents. It also shows a lower level of diversity within the elite breeding germplasm. Our results demonstrate that this set of SSRs was highly informative and was useful in generating a meaningful classification of the germplasm that we sampled. Our long-term goal is to determine the utility of molecular marker diversity as a tool for gene discovery and efficient use of germplasm.Key words: Hordeum vulgare subsp. vulgare, Hordeum vulgare subsp. spontaneum, SSR, genetic diversity, germplasm.


2018 ◽  
Vol 69 (9) ◽  
pp. 904 ◽  
Author(s):  
Siwar Bouabid ◽  
H. Chennaoui Kourda ◽  
A. Boussaha ◽  
M. Ben Naceur ◽  
A. Zoghlami Khélil

Narbon vetch (Vicia narbonensis L.) is a promising forage legume with good resistance to cold and drought. The assessment of genetic diversity of Narbon vetch is an essential component in germplasm management. In this study, we analysed the genetic diversity of 13 local and introduced Narbon vetch accessions from three continents using 27 morphological traits and 13 simple sequence repeat (SSR) markers. Significant differences among accessions for morphological and phenological traits were observed. The SSR markers showed a total of 126 alleles with a mean number of two alleles per locus. Polymorphic information content values were in the range of 0.772–0.915 with an average of 0.858. A high level of diversity (Nei’s genetic differentiation index of 59) was observed among accessions. Analysis of genetic distances separated the studied accessions into three groups based on both morphological and SSR markers. Cluster analysis of the SSR markers separated the accessions into three groups according to geographical origin. The Tunisian populations shared the same morphological traits but differed genetically from each other and were similar to those from Lebanon. A significant correlation was detected between morphological traits and SSR markers. The results suggested that SSR markers can be used to efficiently distinguish Narbon vetch accessions and estimate their genetic diversity.


2016 ◽  
Vol 35 (2) ◽  
pp. 133
Author(s):  
Nining Nurini Andayani ◽  
M. Yasin H.G ◽  
Marcia B. Pabendon

Information on genetic diversity of QPM and Provit-A maize germplasm is important to support breeding program, in order to form a high yielding maize hybrid. Simple sequence repeats (SSR) have been extensively utilized as genetic markers to study the genetic diversity, cultivar identification, and gene mapping. The objectives of this research were to investigate the genetic diversity and to obtain information the genetic relationship among 20 maize accessions using 29 SSRs. The research was carried out at the Moleculer Biology Laboratory of Indonesian Cereals Research Institute (ICERI) in Maros, South Sulawesi. Twenty nine polymorphic primers that covered the 10 maize chromosomes were used to fingerprint the genotype of the lines, detecting 83 allels, with an average allel number of 3 allels per locus, ranging from 2 to 6 alleles per locus. The results indicated that polymorphism information content (PIC) ranged from 0.10 (nc133 and phi072) to 0.74 (phi064) with the average of 0.45. Genetic distance based on genetic similarity estimate ranged from 0.39 to 0.92. The high level of PIC values and wide genetic distances indicated the large variability among maize germplasm. Cluster analysis divided the 20 maize accessions into three groups. Coefficient cofenetic value (r) was 0.85 indicated a good fit based on the genetic similarity value. As many as 30 inbred heterotic recombinants were derived by incorporating 20 QPM and Provit-A with genetic distance of ≤0.65. The SSRs proved to be reliable and is practical technique for revealing the relationship among specialty maize genotypes.


2021 ◽  
Vol 29 (1) ◽  
pp. 28-32
Author(s):  
О. Y. Bielikova ◽  
A. E. Mariutsa ◽  
A. I. Mruk ◽  
S. I. Tarasjuk ◽  
V. M. Romanenko

The rational use of valuable fish species from aquaculture is difficult to implement without knowledge of the state of the genetic structure of local stocks. Different types of DNA markers can be used to achieve the goals of selection and breeding work. The genetic structure of a local stock of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) (Salmoniformes, Salmonidae) farmed in Ukraine was studied using DNA-markers: microsatellite (SSR-markers – simple-sequence repeats-markers) and intermicrosatellite (ISSR – inter-simple sequence repeat). Five fragments of trinucleotide microsatellite motifs with a single anchor nucleotide at the 3'-end were used as a primer for analysis by the ISSR-PCR method. Totally, 85 amplicons were obtained across the five loci, of which 92.9% were polymorphic. The total number of alleles ranged from 10 (marker (ACC)₆G) to 23 (marker (AGC)₆G). The following monomorphic amplicons were determined for the studied local stock of rainbow trout: according to marker (CTC)₆C – 770 and 520 bp bands, for the marker (GAG)₆C – 345, 295 and 260 bp, and for the marker (AGC)₆C – 350 bp. The average number of polymorphic bands per locus was 15.8. The selected ISSR primers had a level of polymorphic information content above the average. The most effective markers for molecular-genetic analysis of rainbow trout were (AGC)₆G and (AGC)₆C according to the percentage of polymorphic bands, marker index, effective multiplex ratio and resolving power. The selected ISSR loci allow the genetic structure of the studied local stock to be characterized using the total and the effective number of alleles per locus (Na and Ne were 1.9 and 1.4, respectively), the Shannon index (average value I was 0.4) and the unbiased expected heterozygosity (mean uHe = 0.3). Microsatellite-based analysis showed features of the genetic structure of the local stock of rainbow trout at six microsatellite loci (OMM 1032, OMM 1077, OMM 1088, Str 15, Str 60, Str 73). Allelic diversity was established and alleles with the highest frequency and most typical for the given stock were identified. The Shannon index and unbiased expected heterozygosity were determined using SSR-markers and were 1.42 and 0.79, respectively. This depicts the complexity of the population structure, a high level of genetic diversity and indicates a high level of heterozygosity of local stock. The “gene pool profile” established as a result of ISSR-PCR in the future will help to differentiate local stocks of rainbow trout in aquaculture of Ukraine. Microsatellite markers provide the ability to determine individual features of genetic variation of local populations and to conduct the management of genetic resources on fish farms.


2021 ◽  
Vol 13 (12) ◽  
pp. 6830
Author(s):  
Murat Guney ◽  
Salih Kafkas ◽  
Hakan Keles ◽  
Mozhgan Zarifikhosroshahi ◽  
Muhammet Ali Gundesli ◽  
...  

The food needs for increasing population, climatic changes, urbanization and industrialization, along with the destruction of forests, are the main challenges of modern life. Therefore, it is very important to evaluate plant genetic resources in order to cope with these problems. Therefore, in this study, a set of ninety-one walnut (Juglans regia L.) accessions from Central Anatolia region, composed of seventy-four accessions and eight commercial cultivars from Turkey, and nine international reference cultivars, was analyzed using 45 SSR (Simple Sequence Repeats) markers to reveal the genetic diversity. SSR analysis identified 390 alleles for 91 accessions. The number of alleles per locus ranged from 3 to 19 alleles with a mean value of 9 alleles per locus. Genetic dissimilarity coefficients ranged from 0.03 to 0.68. The highest number of alleles was obtained from CUJRA212 locus (Na = 19). The values of polymorphism information content (PIC) ranged from 0.42 (JRHR222528) to 0.86 (CUJRA212) with a mean PIC value of 0.68. Genetic distances were estimated according to the UPGMA (Unweighted Pair Group Method with Arithmetic Average), Principal Coordinates (PCoA), and the Structure-based clustering. The UPGMA and Structure clustering of the accessions depicted five major clusters supporting the PCoA results. The dendrogram revealed the similarities and dissimilarities among the accessions by identifying five major clusters. Based on this study, SSR analyses indicate that Yozgat province has an important genetic diversity pool and rich genetic variance of walnuts.


Sign in / Sign up

Export Citation Format

Share Document